State and parameter estimation in closed-loop dynamic real-time optimization - A comparative study

被引:0
|
作者
Matias, Jose [1 ,2 ]
Swartz, Christopher L. E. [1 ]
机构
[1] McMaster Univ, Dept Chem Engn, 1280 Main St W, Hamilton, ON L8S 4L7, Canada
[2] Katholieke Univ Leuven, Dept Chem Engn, Jan Pieter Nayerlaan 5, B-2860 St Katelijne Waver, Belgium
关键词
Dynamic real-time optimization; State and parameter estimation; Bias update; Output disturbance; Model updating strategies; Plant feedback; Moving-horizon estimation; MODEL-PREDICTIVE CONTROL; DISTRIBUTED MPC SYSTEMS; OPTIMIZING CONTROL; COORDINATION; STRATEGY;
D O I
10.1016/j.compchemeng.2024.108932
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Dynamic real-time optimization (DRTO) schemes have risen in popularity as plant environments have become increasingly dynamic due to globalization and deregulated energy markets. Inclusion of the impact of the plant control system on the predicted response gives rise to closed-loop DRTO (CL-DRTO). To avoid using a potentially inaccurate nominal model in CL-DRTO, this work explores incorporating plant measurements through various model updating strategies: bias update, state estimation, and combined parameter and state estimation, the latter two utilizing moving horizon estimation. The strategies are applied to two case studies, a distillation column and a continuous stirred tank reactor. Our findings suggest that the combined state and parameter estimation approach provides improvement in economic performance and fewer constraint violations when parametric uncertainty affects system dynamics nonlinearly. Conversely, the bias update strategy achieves satisfactory economic performance when the propagation of parameter uncertainty in the dynamic model is linear or mildly nonlinear.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Robust closed-loop dynamic real-time optimization
    MacKinnon, Lloyd
    Swartz, Christopher L. E.
    JOURNAL OF PROCESS CONTROL, 2023, 126 : 12 - 25
  • [2] Dynamic Real-Time Optimization with Closed-Loop Prediction
    Jamaludin, Mohammad Zamry
    Swartz, Christopher L. E.
    AICHE JOURNAL, 2017, 63 (09) : 3896 - 3911
  • [3] THE UTILIZATION OF CLOSED-LOOP PREDICTION FOR DYNAMIC REAL-TIME OPTIMIZATION
    Jamaludin, Mohammad Z.
    Li, Hao
    Swartz, Christopher L. E.
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2017, 95 (10): : 1968 - 1978
  • [4] Closed-loop Formulation for Nonlinear Dynamic Real-time Optimization
    Jamaludin, Mohammad Zamry
    Swartz, Christopher L. E.
    IFAC PAPERSONLINE, 2016, 49 (07): : 406 - 411
  • [5] SUCCESSFUL CLOSED-LOOP REAL-TIME OPTIMIZATION
    FATORA, FC
    AYALA, JS
    HYDROCARBON PROCESSING, 1992, 71 (06): : 65 - 68
  • [6] Approximation of closed-loop prediction for dynamic real-time optimization calculations
    Jamaludin, Mohammad Zamry
    Swartz, Christopher L. E.
    COMPUTERS & CHEMICAL ENGINEERING, 2017, 103 : 23 - 38
  • [7] Production scheduling in dynamic real-time optimization with closed-loop prediction
    Remigio, Jerome E. J.
    Swartz, Christopher L. E.
    JOURNAL OF PROCESS CONTROL, 2020, 89 : 95 - 107
  • [8] Closed-loop dynamic real-time optimization with stabilizing model predictive control
    Ramesh, Praveen Sundaresan
    Swartz, Christopher L. E.
    Mhaskar, Prashant
    AICHE JOURNAL, 2021, 67 (10)
  • [9] Closed-loop dynamic real-time optimization of a batch graft polymerization reactor
    Bousbia-Salah, Ryad
    Lesage, Francois
    Fikar, Miroslav
    Latifi, Abderrazak
    29TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, PT B, 2019, 46 : 1345 - 1350
  • [10] Real-time nonlinear parameter estimation and tracking control of unmanned aerial vehicles in closed-loop
    Imran, Imil Hamda
    Can, Aydin
    Stolkin, Rustam
    Montazeri, Allahyar
    SCIENTIFIC REPORTS, 2023, 13 (01):