State and parameter estimation in closed-loop dynamic real-time optimization - A comparative study

被引:0
作者
Matias, Jose [1 ,2 ]
Swartz, Christopher L. E. [1 ]
机构
[1] McMaster Univ, Dept Chem Engn, 1280 Main St W, Hamilton, ON L8S 4L7, Canada
[2] Katholieke Univ Leuven, Dept Chem Engn, Jan Pieter Nayerlaan 5, B-2860 St Katelijne Waver, Belgium
关键词
Dynamic real-time optimization; State and parameter estimation; Bias update; Output disturbance; Model updating strategies; Plant feedback; Moving-horizon estimation; MODEL-PREDICTIVE CONTROL; DISTRIBUTED MPC SYSTEMS; OPTIMIZING CONTROL; COORDINATION; STRATEGY;
D O I
10.1016/j.compchemeng.2024.108932
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Dynamic real-time optimization (DRTO) schemes have risen in popularity as plant environments have become increasingly dynamic due to globalization and deregulated energy markets. Inclusion of the impact of the plant control system on the predicted response gives rise to closed-loop DRTO (CL-DRTO). To avoid using a potentially inaccurate nominal model in CL-DRTO, this work explores incorporating plant measurements through various model updating strategies: bias update, state estimation, and combined parameter and state estimation, the latter two utilizing moving horizon estimation. The strategies are applied to two case studies, a distillation column and a continuous stirred tank reactor. Our findings suggest that the combined state and parameter estimation approach provides improvement in economic performance and fewer constraint violations when parametric uncertainty affects system dynamics nonlinearly. Conversely, the bias update strategy achieves satisfactory economic performance when the propagation of parameter uncertainty in the dynamic model is linear or mildly nonlinear.
引用
收藏
页数:20
相关论文
共 52 条
  • [1] Optimizing control of simulated moving beds - experimental implementation
    Abel, S
    Erdem, G
    Amanullah, M
    Morari, M
    Mazzotti, M
    Morbidelli, M
    [J]. JOURNAL OF CHROMATOGRAPHY A, 2005, 1092 (01) : 2 - 16
  • [2] Challenges and Opportunities on Nonlinear State Estimation of Chemical and Biochemical Processes
    Alexander, Ronald
    Campani, Gilson
    Dinh, San
    Lima, Fernando V.
    [J]. PROCESSES, 2020, 8 (11) : 1 - 27
  • [3] Real time optimization for quality control of batch thermal sterilization of prepackaged foods
    Alonso, Antonio A.
    Arias-Mendez, Ana
    Balsa-Canto, Eva
    Garcia, Miriam R.
    Molina, Juan I.
    Vilas, Carlos
    Villafin, Marcos
    [J]. FOOD CONTROL, 2013, 32 (02) : 392 - 403
  • [4] CasADi: a software framework for nonlinear optimization and optimal control
    Andersson, Joel A. E.
    Gillis, Joris
    Horn, Greg
    Rawlings, James B.
    Diehl, Moritz
    [J]. MATHEMATICAL PROGRAMMING COMPUTATION, 2019, 11 (01) : 1 - 36
  • [5] Bequette W.B., 2003, Process Control: Modeling, Design, and Simulation
  • [6] Bergman S., 2009, IFAC Proc., V42, P257
  • [7] On-line optimizing control of bulk free radical polymerization reactors under temporary loss of temperature regulation: Experimental study on a 1-L batch reactor
    Bhat, Shrikant A.
    Saraf, Deoki N.
    Gupta, Sanjay
    Gupta, Santosh K.
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2006, 45 (22) : 7530 - 7539
  • [8] Practical identifiability of ASM2d parameters -: systematic selection and tuning of parameter subsets
    Brun, R
    Kühni, M
    Siegrist, H
    Gujer, W
    Reichert, P
    [J]. WATER RESEARCH, 2002, 36 (16) : 4113 - 4127
  • [9] Process optimization via constraints adaptation
    Chachuat, B.
    Marchetti, A.
    Bonvin, D.
    [J]. JOURNAL OF PROCESS CONTROL, 2008, 18 (3-4) : 244 - 257
  • [10] Optimal Operation of Process Plants Under Partial Shutdown Conditions
    Chong, Zhiwen
    Swartz, Christopher L. E.
    [J]. AICHE JOURNAL, 2013, 59 (11) : 4151 - 4168