Biophysics of SARS-CoV-2 spike protein's receptor-binding domain interaction with ACE2 and neutralizing antibodies: from computation to functional insights

被引:0
作者
da Silva, Fernando Luis Barroso [1 ,2 ]
Paco, Karen [3 ]
Laaksonen, Aatto [4 ,5 ,6 ,7 ]
Ray, Animesh [3 ,8 ]
机构
[1] Univ Sao Paulo, Fac Ciencias Farmaceut Ribeirao Preto, Dept Ciencias Biomol, Ave Prof Zeferino Vaz S, BR-14040903 Ribeirao Preto, SP, Brazil
[2] NC State Univ, Dept Chem & Biomol Engn, 911 Partners Way,Engn Bldg 1 EB1, Raleigh, NC 27695 USA
[3] Keck Grad Inst, Riggs Sch Appl Life Sci, 535 Watson Dr, Claremont, CA 91711 USA
[4] Stockholm Univ, Dept Chem, Arrhenius Lab, Svante Arrhenius Vag 8, S-10691 Stockholm, Sweden
[5] Nanjing Tech Univ, State Key Lab Mat Oriented & Chem Engn, 30 Puzhu Road S, Nanjing 210009, Peoples R China
[6] Lulea Univ Technol, Dept Engn Sci & Math, Div Energy Sci, Laboratorievagen 14, S-97187 Lulea, Sweden
[7] Petru Poni Inst Macromol Chem, Ctr Adv Res Bionanoconjugates & Biopolymers, Aleea Grigore Ghica Voda 41A, Iasi 700487, Romania
[8] CALTECH, Div Biol & Biol Engn, 1200 E Calif Blvd, Pasadena, CA 91125 USA
基金
瑞典研究理事会; 美国国家卫生研究院; 美国国家科学基金会; 巴西圣保罗研究基金会;
关键词
Electrostatic interactions; pH effects; Molecular simulation; Complexation; Antibodies; Virus; Transmissibility; ANGIOTENSIN-CONVERTING ENZYME-2; SARS-CORONAVIRUS; CELLS; COVID-19; AFFINITY; VACCINE; ENTRY; COV; GLYCOSYLATION; SIMULATION;
D O I
10.1007/s12551-025-01276-z
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
The spike protein encoded by the SARS-CoV-2 has become one of the most studied macromolecules in recent years due to its central role in COVID-19 pathogenesis. The spike protein's receptor-binding domain (RBD) directly interacts with the host-encoded receptor protein, ACE2. This review critically examines computational insights into RBD's interaction with ACE2 and with therapeutic antibodies designed to interfere with this interaction. We begin by summarizing insights from early computational studies on pre-pandemic SARS-CoV-1 RBD interactions and how these early studies shaped the understanding of SARS-CoV-2. Next, we highlight key theoretical contributions that revealed the molecular mechanisms behind the binding affinity of SARS-CoV-2 RBD against ACE2, and the structural changes that have enhanced the infectivity of emerging variants. Special attention is given to the "RBD charge rule", a predictive framework for determining variant infectivity based on the electrostatic properties of the RBD. Towards applying the computational insights to therapy, we discuss a multiscale computational protocol for optimizing monoclonal antibodies to improve binding affinity across multiple spike protein variants, including representatives from the Omicron family. Finally, we explore how these insights can inform the development of future vaccines and therapeutic interventions for combating future coronavirus diseases.
引用
收藏
页码:309 / 333
页数:25
相关论文
共 190 条
[31]   Affinity enhancement of an in vivo matured therapeutic antibody using structure-based computational design [J].
Clark, LA ;
Boriack-Sjodin, PA ;
Eldredge, J ;
Fitch, C ;
Friedman, B ;
Hanf, KJM ;
Jarpe, M ;
Liparoto, SF ;
Li, Y ;
Lugovskoy, A ;
Miller, S ;
Rushe, M ;
Sherman, W ;
Simon, K ;
Van Vlijmen, H .
PROTEIN SCIENCE, 2006, 15 (05) :949-960
[32]   Exploring pharmacological approaches for managing cytokine storm associated with pneumonia and acute respiratory distress syndrome in COVID-19 patients [J].
Convertino, Irma ;
Tuccori, Marco ;
Ferraro, Sara ;
Valdiserra, Giulia ;
Cappello, Emiliano ;
Focosi, Daniele ;
Blandizzi, Corrado .
CRITICAL CARE, 2020, 24 (01)
[33]   NS1 from Two Zika Virus Strains Differently Interact with a Membrane: Insights to Understand Their Differential Virulence [J].
Cuevas, Sergio Alejandro Poveda ;
da Silva, Fernando L. Barroso ;
Etchebest, Catherine .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2023, 63 (04) :1386-1400
[34]   Electrostatic Features for the Receptor Binding Domain of SARS-COV-2 Wildtype and Its Variants. Compass to the Severity of the Future Variants with the Charge-Rule [J].
da Silva, Fernando L. Barroso ;
Giron, Carolina Correa ;
Laaksonen, Aatto .
JOURNAL OF PHYSICAL CHEMISTRY B, 2022, 126 (36) :6835-6852
[35]  
da Silva MS, 2021, REV INST MED TROP SP, V63, DOI [10.1590/S1678-9946202163058, 10.1590/s1678-9946202163058]
[36]   Viral targets for vaccines against COVID-19 [J].
Dai, Lianpan ;
Gao, George F. .
NATURE REVIEWS IMMUNOLOGY, 2021, 21 (02) :73-82
[37]  
Dayer MR, 2017, ARCH CLIN INFECT DIS, V12, DOI 10.5812/archcid.13823
[38]   Why Does the Novel Coronavirus Spike Protein Interact so Strongly with the Human ACE2? A Thermodynamic Answer [J].
de Andrade, Jones ;
Goncalves, Paulo Fernando Bruno ;
Netz, Paulo Augusto .
CHEMBIOCHEM, 2021, 22 (05) :865-875
[39]   Molecular Dynamics Analysis of Fast-Spreading Severe Acute Respiratory Syndrome Coronavirus 2 Variants and Their Effects on the Interaction with Human Angiotensin-Converting Enzyme 2 [J].
de Souza, Anacleto Silva ;
Amorim, Vitor Martins de Freitas ;
Guardia, Gabriela D. A. ;
dos Santos, Felipe R. C. ;
dos Santos, Filipe F. ;
de Souza, Robson Francisco ;
Juvenal, Guilherme de Araujo ;
Huang, Yihua ;
Ge, Pingju ;
Jiang, Yinan ;
Li, Coco ;
Paudel, Prajwal ;
Ulrich, Henning ;
Galante, Pedro A. F. ;
Guzzo, Cristiane Rodrigues .
ACS OMEGA, 2022, 7 (35) :30700-30709
[40]   ACE2: A novel therapeutic target for cardiovascular diseases [J].
Der Sarkissian, S ;
Huentelman, MJ ;
Stewart, J ;
Katovich, MJ ;
Raizada, MK .
PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 2006, 91 (1-2) :163-198