Coupling CO2 reduction and energy storage by electrolytic zinc

被引:0
作者
Cai, Muya [1 ,2 ]
Wang, Hongya [1 ,2 ]
Shi, Hao [1 ,2 ]
Zhou, Fengyin [1 ,2 ]
Zhang, Xiaodan [1 ,2 ]
Tang, Mengyi [1 ,2 ]
Wang, Dihua [1 ,2 ,3 ,4 ]
Yin, Huayi [1 ,2 ,3 ,4 ]
机构
[1] Wuhan Univ, Sch Resource & Environm Sci, 299 Bayi Rd, Wuhan 430072, Peoples R China
[2] Wuhan Univ, Int Cooperat Base Sustainable Utilizat Resources &, Wuhan 430072, Peoples R China
[3] Wuhan Univ, State Key Lab Water Resources & Hydropower Engn Sc, Wuhan 430072, Peoples R China
[4] Hubei Prov Key Lab Biomass Resource Chem & Environ, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
CO production; Energy storage; Zincothermic reduction; ZnO electrolysis; CO2; reduction; SOLAR SYNGAS PRODUCTION; THERMOCHEMICAL CYCLES; CARBON; OXIDATION; CONVERSION; ZN/ZNO; H2O; GROWTH; MODEL; O-2;
D O I
10.1016/j.ensm.2025.104165
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Scalable and efficient CO2-to-CO reduction, driven by renewable energy, is a promising way for decarbonization. However, solar and wind energy are characterized by intermittent fluctuations and high uncertainty. Here, we couple CO2 reduction with cost-effective energy storage by utilizing electrolytic Zn, allowing the long-term storage of electrical energy as metallic Zn instead of batteries. First, ZnO is electrodeposited to Zn and O2 in a KOH solution using an inert anode, achieving a high Faradaic efficiency of 99.2 %. Second, CO2 is reduced to CO by the electrolytic Zn in a closed reactor (500 degrees C), achieving a high CO2-to-CO conversion efficiency of 98.3 %. The addition of metal catalysts also facilitates the conversion of CO2 into a C-metal composite. The two-step approach is a closed-loop process that indirectly reduces CO2 into CO and O2 with an estimated voltage efficiency of 68.8 %. DFT calculations reveal that adsorbed CO* on the Zn surface can easily desorb with only 0.04 eV, leading to a high CO production. Beyond its role as a reducing agent, Zn also serves as an energy carrier that can achieve both energy storage and decoupling of the CO2 splitting reactions to embrace the intermittency of renewable energies.
引用
收藏
页数:8
相关论文
共 50 条
[41]   Hollow Structure for Photocatalytic CO2 Reduction [J].
Wang, Zhiliang ;
Akter Monny, Sabiha ;
Wang, Lianzhou .
CHEMNANOMAT, 2020, 6 (06) :881-888
[42]   Precise CO2 Reduction for Bilayer Graphene [J].
Gong, Peng ;
Tang, Can ;
Wang, Boran ;
Xiao, Taishi ;
Zhu, Hao ;
Li, Qiaowei ;
Sun, Zhengzong .
ACS CENTRAL SCIENCE, 2022, 8 (03) :394-401
[43]   The Development of Cocatalysts for Photoelectrochemical CO2 Reduction [J].
Chang, Xiaoxia ;
Wang, Tuo ;
Yang, Piaoping ;
Zhang, Gong ;
Gong, Jinlong .
ADVANCED MATERIALS, 2019, 31 (31)
[44]   Photocatalysts for CO2 reduction and computational insights [J].
Alli, Yakubu Adekunle ;
Oladoye, Peter Olusakin ;
Onawole, Abdulmujeeb T. ;
Anuar, Hazleen ;
Adewuyi, Sheriff ;
Ogunbiyi, Olutobi Daniel ;
Philippot, Karine .
FUEL, 2023, 344
[45]   Photocatalysts for Photocatalytic CO2 Reduction: A Review [J].
Lizhong, Zhang .
CHINA PETROLEUM PROCESSING & PETROCHEMICAL TECHNOLOGY, 2022, 24 (01) :149-160
[46]   Efficient Electrochemical Reduction of CO2 to CO in Ionic Liquids [J].
Hu, Yanjie ;
Feng, Jiaqi ;
Zhang, Xiangping ;
Gao, Hongshuai ;
Jin, Saimeng ;
Liu, Lei ;
Shen, Weifeng .
CHEMISTRYSELECT, 2021, 6 (37) :9873-9879
[47]   Scaling-up the Calcium-Looping Process for CO2 Capture and Energy Storage [J].
Ortiz, Carlos ;
Valverde, Jose Manuel ;
Chacartegui, Ricardo ;
Perez-Maqueda, Luis A. ;
Gimenez-Gavarrell, Pau .
KONA POWDER AND PARTICLE JOURNAL, 2021, 38 (38) :189-208
[48]   Wind power energy storage for in situ shale oil recovery with minimal CO2 emissions [J].
Bridges, Jack E. .
IEEE TRANSACTIONS ON ENERGY CONVERSION, 2007, 22 (01) :103-109
[49]   Improving Electrocatalytic CO2 Reduction over Iron Tetraphenylporphyrin with Triethanolamine as a CO2 Shuttle [J].
Yin, Zhiyuan ;
Zhang, Mengchun ;
Long, Yuchi ;
Lei, Haitao ;
Li, Xialiang ;
Zhang, Xue-Peng ;
Zhang, Wei ;
Apfel, Ulf-Peter ;
Cao, Rui .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2025,
[50]   An Integrated Framework for Geothermal Energy Storage with CO2 Sequestration and Utilization [J].
Liu, Yueliang ;
Hu, Ting ;
Rui, Zhenhua ;
Zhang, Zheng ;
Du, Kai ;
Yang, Tao ;
Dindoruk, Birol ;
Stenby, Erling Halfdan ;
Torabi, Farshid ;
Afanasyev, Andrey .
ENGINEERING, 2023, 30 :121-130