Coupling CO2 reduction and energy storage by electrolytic zinc

被引:1
作者
Cai, Muya [1 ,2 ]
Wang, Hongya [1 ,2 ]
Shi, Hao [1 ,2 ]
Zhou, Fengyin [1 ,2 ]
Zhang, Xiaodan [1 ,2 ]
Tang, Mengyi [1 ,2 ]
Wang, Dihua [1 ,2 ,3 ,4 ]
Yin, Huayi [1 ,2 ,3 ,4 ]
机构
[1] Wuhan Univ, Sch Resource & Environm Sci, 299 Bayi Rd, Wuhan 430072, Peoples R China
[2] Wuhan Univ, Int Cooperat Base Sustainable Utilizat Resources &, Wuhan 430072, Peoples R China
[3] Wuhan Univ, State Key Lab Water Resources & Hydropower Engn Sc, Wuhan 430072, Peoples R China
[4] Hubei Prov Key Lab Biomass Resource Chem & Environ, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
CO production; Energy storage; Zincothermic reduction; ZnO electrolysis; CO2; reduction; SOLAR SYNGAS PRODUCTION; THERMOCHEMICAL CYCLES; CARBON; OXIDATION; CONVERSION; ZN/ZNO; H2O; GROWTH; MODEL; O-2;
D O I
10.1016/j.ensm.2025.104165
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Scalable and efficient CO2-to-CO reduction, driven by renewable energy, is a promising way for decarbonization. However, solar and wind energy are characterized by intermittent fluctuations and high uncertainty. Here, we couple CO2 reduction with cost-effective energy storage by utilizing electrolytic Zn, allowing the long-term storage of electrical energy as metallic Zn instead of batteries. First, ZnO is electrodeposited to Zn and O2 in a KOH solution using an inert anode, achieving a high Faradaic efficiency of 99.2 %. Second, CO2 is reduced to CO by the electrolytic Zn in a closed reactor (500 degrees C), achieving a high CO2-to-CO conversion efficiency of 98.3 %. The addition of metal catalysts also facilitates the conversion of CO2 into a C-metal composite. The two-step approach is a closed-loop process that indirectly reduces CO2 into CO and O2 with an estimated voltage efficiency of 68.8 %. DFT calculations reveal that adsorbed CO* on the Zn surface can easily desorb with only 0.04 eV, leading to a high CO production. Beyond its role as a reducing agent, Zn also serves as an energy carrier that can achieve both energy storage and decoupling of the CO2 splitting reactions to embrace the intermittency of renewable energies.
引用
收藏
页数:8
相关论文
共 56 条
[1]   The state of zinc in methanol synthesis over a Zn/ZnO/Cu(211) model catalyst [J].
Amann, Peter ;
Kloetzer, Bernhard ;
Degerman, David ;
Koepfle, Norbert ;
Goetsch, Thomas ;
Loemker, Patrick ;
Rameshan, Christoph ;
Ploner, Kevin ;
Bikaljevic, Djuro ;
Wang, Hsin-Yi ;
Soldemo, Markus ;
Shipilin, Mikhail ;
Goodwin, Christopher M. ;
Gladh, Joergen ;
Stenlid, Joakim Halldin ;
Boerner, Mia ;
Schlueter, Christoph ;
Nilsson, Anders .
SCIENCE, 2022, 376 (6593) :603-+
[2]   The role of energy storage in deep decarbonization of electricity production [J].
Arbabzadeh, Maryam ;
Sioshansi, Ramteen ;
Johnson, Jeremiah X. ;
Keoleian, Gregory A. .
NATURE COMMUNICATIONS, 2019, 10 (1)
[3]   The kinetics of hydrogen production in the oxidation of liquid zinc with water vapor [J].
Berman, A ;
Epstein, M .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2000, 25 (10) :957-967
[4]   Carbon depositions within the oxide scale and its effect on the oxidation behavior of low alloy steel in low (0.1 MPa), sub-(5 MPa) and supercritical (10 MPa) CO2 at 550°C [J].
Bidabadi, Mohammad Hassan Shirani ;
Chandra-ambhorn, Somrerk ;
Rehman, Abdul ;
Zheng, Yu ;
Zhang, Chi ;
Chen, Hao ;
Yang, Zhi-Gang .
CORROSION SCIENCE, 2020, 177
[5]   A Kinetic Model for Dissolution of Zinc Oxide Powder Obtained from Waste Alkaline Batteries in Sodium Hydroxide Solutions [J].
Demirkiran, Nizamettin ;
Ozdemir, Gulistan Deniz Turhan .
METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE, 2019, 50 (01) :491-501
[6]   Zinc electrodeposition from flowing alkaline zincate solutions: Role of hydrogen evolution reaction [J].
Dundalek, Jan ;
Snajdr, Ivo ;
Libansky, Ondrej ;
Vrana, Jiri ;
Pocedic, Jaromir ;
Mazur, Petr ;
Kosek, Juraj .
JOURNAL OF POWER SOURCES, 2017, 372 :221-226
[7]   Design principles of perovskites for solar-driven thermochemical splitting of CO2 [J].
Ezbiri, Miriam ;
Takacs, Michael ;
Stolz, Boris ;
Lungthok, Jeffrey ;
Steinfeld, Aldo ;
Michalsky, Ronald .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (29) :15105-15115
[8]   Global Carbon Budget 2023 [J].
Friedlingstein, Pierre ;
O'Sullivan, Michael ;
Jones, Matthew W. ;
Andrew, Robbie M. ;
Bakker, Dorothee C. E. ;
Hauck, Judith ;
Landschutzer, Peter ;
Le Quere, Corinne ;
Luijkx, Ingrid T. ;
Peters, Glen P. ;
Peters, Wouter ;
Pongratz, Julia ;
Schwingshackl, Clemens ;
Sitch, Stephen ;
Canadell, Josep G. ;
Ciais, Philippe ;
Jackson, Robert B. ;
Alin, Simone R. ;
Anthoni, Peter ;
Barbero, Leticia ;
Bates, Nicholas R. ;
Becker, Meike ;
Bellouin, Nicolas ;
Decharme, Bertrand ;
Bopp, Laurent ;
Brasika, Ida Bagus Mandhara ;
Cadule, Patricia ;
Chamberlain, Matthew A. ;
Chandra, Naveen ;
Chau, Thi-Tuyet-Trang ;
Chevallier, Frederic ;
Chini, Louise P. ;
Cronin, Margot ;
Dou, Xinyu ;
Enyo, Kazutaka ;
Evans, Wiley ;
Falk, Stefanie ;
Feely, Richard A. ;
Feng, Liang ;
Ford, Daniel J. ;
Gasser, Thomas ;
Ghattas, Josefine ;
Gkritzalis, Thanos ;
Grassi, Giacomo ;
Gregor, Luke ;
Gruber, Nicolas ;
Gurses, Ozgur ;
Harris, Ian ;
Hefner, Matthew ;
Heinke, Jens .
EARTH SYSTEM SCIENCE DATA, 2023, 15 (12) :5301-5369
[9]   CO2 metallothermic conversion to valuable nanocarbons by mixed Mg/Ca reductant [J].
Giannakopoulou, Tatiana ;
Todorova, Nadia ;
Plakantonaki, Niki ;
Vagenas, Michail ;
Papailias, Ilias ;
Sakellis, Elias ;
Trapalis, Christos .
JOURNAL OF CO2 UTILIZATION, 2022, 65
[10]   Electroactive ZnO: Mechanisms, Conductivity, and Advances in Zn Alkaline Battery Cycling [J].
Hawkins, Brendan E. ;
Turney, Damon E. ;
Messinger, Robert J. ;
Kiss, Andrew M. ;
Yadav, Gautam G. ;
Banerjee, Sanjoy ;
Lambert, Timothy N. .
ADVANCED ENERGY MATERIALS, 2022, 12 (15)