KNOWLEDGE-AWARE PROMPT LEARNING FRAMEWORK FOR KOREAN-CHINESE MICROBLOG SENTIMENT ANALYSIS

被引:0
作者
Yang, Xinyu [1 ]
Wang, Hengxuan [2 ]
Jin, Hulling [3 ]
Zhang, Zhenguo [2 ]
Yuan, Xiaojie [1 ]
机构
[1] Nankai Univ, Coll Comp Sci, Tianjin, Peoples R China
[2] Yanbian Univ, Dept Comp Sci & Technol, Yanbian, Peoples R China
[3] Yanbian Univ, Integrat Coll, Dept Computat Linguist, Yanbian, Peoples R China
来源
2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2024) | 2024年
基金
中国国家自然科学基金;
关键词
Korean-Chinese Language Processing; Prompt Learning; Sentiment Analysis;
D O I
10.1109/ICASSP48485.2024.10448262
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The Korean-Chinese language spoken by the Chinese Koreans, a cross-border ethnic group in China, has distinct linguistic characteristics compared to the standard Korean. Despite the increasing presence of Korean-Chinese microblogs on the Sina Microblog Platform, sentiment analysis in this language is still in its early stages. To bridge this gap, we construct a Korean-Chinese Microblog Sentiment Analysis (KCMSA) dataset. To maximize the benefits of Pre-trained Language Models, we propose the Knowledge-Aware Prompt Learning Framework (KAP). Our framework utilizes prompt learning and integrates Korean sentiment knowledge base to enhance accuracy, and leverages multiple refinement operations to reduce the introduced noise. Baseline evaluations and experiments over existing Korean short-text social platform datasets demonstrate the superiority of KAP.
引用
收藏
页码:10541 / 10545
页数:5
相关论文
共 26 条
  • [1] Diaspora varieties of Korean: Morpho-syntactic contrasts in Koryo Mar and Vernacular Yanbian Korean
    Barnes-Sadler, Simon
    Yeon, Jaehoon
    [J]. LINGUA, 2019, 231
  • [2] Brown TB, 2020, ADV NEUR IN, V33
  • [3] KnowPrompt: Knowledge-aware Prompt-tuning with Synergistic Optimization for Relation Extraction
    Chen, Xiang
    Zhang, Ningyu
    Xie, Xin
    Deng, Shumin
    Yao, Yunzhi
    Tan, Chuanqi
    Huang, Fei
    Si, Luo
    Chen, Huajun
    [J]. PROCEEDINGS OF THE ACM WEB CONFERENCE 2022 (WWW'22), 2022, : 2778 - 2788
  • [4] Cho K., 2014, P 2014 C EMP METH NA, DOI DOI 10.3115/V1/D14-1179
  • [5] 박상민, 2018, [Journal of Intelligence and Information Systems, 지능정보연구], V24, P219
  • [6] Do Hyo Jin, PACLIC 2015, P142
  • [7] Parallel Discrepancy Detection and Incremental Detection
    Fan, Wenfei
    Tian, Chao
    Wang, Yanghao
    Yin, Qiang
    [J]. PROCEEDINGS OF THE VLDB ENDOWMENT, 2021, 14 (08): : 1351 - 1364
  • [8] Feiyu Li, 2021, Chinese Computational Linguistics: 20th China National Conference, CCL 2021, Proceedings. Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence (12869), P45, DOI 10.1007/978-3-030-84186-7_4
  • [9] Github, 2023, About us
  • [10] Hu SD, 2022, PROCEEDINGS OF THE 60TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2022), VOL 1: (LONG PAPERS), P2225