Understanding resistance mechanisms and genetic advancements for managing Sclerotinia stem rot disease in oilseed Brassica

被引:0
|
作者
Gupta, Navin Chandra [1 ]
Ashraf, Suhail [1 ]
Bouqellah, Nahla Alsayd [2 ]
Hamed, Khalid E. [3 ]
Nayana, R. U. Krishna [4 ]
机构
[1] ICAR Res Complex, Natl Inst Plant Biotechnol, Pusa, New Delhi 110012, India
[2] Taibah Univ, Sci Coll, Biol Dept, Al Madinah Al Munawwarah 423178599, Saudi Arabia
[3] Qassim Univ, Coll Agr & Food, Dept Plant Protect, POB 6622, Buraydah 51452, Qassim, Saudi Arabia
[4] Kerala Agr Univ, Ctr Plant Biotechnol & Mol Biol, Dept Plant Biotechnol, Trichur 680654, Kerala, India
关键词
B; napus; Genomic selection; Quantitative trait loci; Marker-assisted breeding; Genetic Techniques; Fungus; TRANSCRIPTION FACTOR; JUNCEA GERMPLASM; SALICYLIC-ACID; NAPUS; DEFENSE; IDENTIFICATION; OVEREXPRESSION; PATHOGENS; RESPONSES; CASCADES;
D O I
10.1016/j.pmpp.2024.102480
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Sclerotinia stem rot (SSR), caused by the fungal pathogen Sclerotinia sclerotiorum, poses a significant threat to oilseed rape ( Brassica napus) and rapeseed-mustard ( Brassica juncea L.) production globally, leading to substantial yield losses and economic consequences. Addressing this challenge requires an in-depth understanding of the mechanisms underlying host-pathogen interactions and the development of effective genetic strategies to enhance resistance. The intricate interplay between S. sclerotiorum and rapeseed involves multifaceted mechanisms that facilitate disease establishment and progression, encompassing various molecular and biochemical pathways involved in the pathogenicity of S. sclerotiorum, alongside the defense responses activated by the host. Additionally, complexities within plant-pathogen interactions, such as the pathogen's manipulation of host defense and the emergence of resistance-breaking strains, are critical to understanding disease dynamics. By employing a comprehensive array of genomic and molecular tools, researchers can develop more effective breeding strategies and genetic engineering approaches to promote long-term resistance against SSR in rapeseed. The integration of insights into key resistance mechanisms and innovative genetic strategies will pave the way for cultivating resilient rapeseed varieties, thereby mitigating the adverse effects of SSR on global rapeseed production.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] New host resistances in Brassica napus and Brassica juncea from Australia, China and India: Key to managing Sclerotinia stem rot (Sclerotinia sclerotiorum) without fungicides
    Barbetti, M. J.
    Li, C. X.
    Banga, S. S.
    Banga, S. K.
    Singh, D.
    Sandhu, P. S.
    Singh, R.
    Liu, S. Y.
    You, M. P.
    CROP PROTECTION, 2015, 78 : 127 - 130
  • [22] Co-location of QTL for Sclerotinia stem rot resistance and flowering time in Brassica napus
    Jian Wu
    Peipei Chen
    Qing Zhao
    Guangqin Cai
    Yue Hu
    Yang Xiang
    Qingyong Yang
    Youping Wang
    Yongming Zhou
    The Crop Journal, 2019, 7 (02) : 227 - 237
  • [23] Transfer of sclerotinia stem rot resistance from wild Brassica oleracea into B. rapa
    Yijuan Ding
    Jiaqin Mei
    Yao Liu
    Lei Wang
    Yuehua Li
    Huafang Wan
    Jiana Li
    Wei Qian
    Molecular Breeding, 2015, 35
  • [24] Quantitative Inheritance of Sclerotinia Stem Rot Resistance in Brassica napus and Relationship to Cotyledon and Leaf Resistances
    Khan, Muhammad Azam
    Cowling, Wallace
    Banga, Surinder Singh
    You, Ming Pei
    Tyagi, Vikrant
    Bharti, Baudh
    Barbetti, Martin J.
    PLANT DISEASE, 2022, 106 (01) : 127 - 136
  • [25] GENETIC ANALYSIS OF PARTIAL RESISTANCE TO BASAL STEM ROT (Sclerotinia sclerotiorum) IN SUNFLOWER
    Amouzadeh, Masoumeh
    Darvishzadeh, Reza
    Haddadi, Parham
    Abdollahi Mandoulakani, Babak
    Rezaee Danesh, Younes
    GENETIKA-BELGRADE, 2013, 45 (03): : 737 - 748
  • [26] Co-location of QTL for Sclerotinia stem rot resistance and flowering time in Brassica napus
    Wu, Jian
    Chen, Peipei
    Zhao, Qing
    Cai, Guangqin
    Hu, Yue
    Xiang, Yang
    Yang, Qingyong
    Wang, Youping
    Zhou, Yongming
    CROP JOURNAL, 2019, 7 (02): : 227 - 237
  • [27] First Report of Sclerotinia Stem Rot Caused by Sclerotinia sclerotiorum on Brassica carinata in Florida
    Young, H. M.
    Srivastava, P.
    Paret, M. L.
    Dankers, H.
    Wright, D. L.
    Marois, J. J.
    Dufault, N. S.
    PLANT DISEASE, 2012, 96 (10) : 1581 - 1581
  • [28] Brassica B-genome resistance to stem rot (Sclerotinia sclerotiorum) in a doubled haploid population of Brassica napus x Brassica carinata
    Navabi, Z. K.
    Strelkov, S. E.
    Good, A. G.
    Thiagarajah, M. R.
    Rahman, M. H.
    CANADIAN JOURNAL OF PLANT PATHOLOGY, 2010, 32 (02) : 237 - 246
  • [29] The complexity of the Sclerotinia sclerotiorum pathosystem in soybean: virulence factors, resistance mechanisms, and their exploitation to control Sclerotinia stem rot
    Megan McCaghey
    Jaime Willbur
    Damon L. Smith
    Mehdi Kabbage
    Tropical Plant Pathology, 2019, 44 : 12 - 22
  • [30] DETECTION OF SCLEROTINIA STEM ROT ON OILSEED RAPE (BRASSICA NAPUS L.) BASED ON LASER-INDUCED BREAKDOWN SPECTROSCOPY
    Liu, F.
    Shen, T.
    Wang, J.
    He, Y.
    Zhang, C.
    Zhou, W.
    TRANSACTIONS OF THE ASABE, 2019, 62 (01) : 123 - 130