Frequency domain-based latent diffusion model for underwater image enhancement

被引:10
作者
Song, Jingyu [1 ]
Xu, Haiyong [1 ]
Jiang, Gangyi [2 ]
Yu, Mei [2 ]
Chen, Yeyao [2 ]
Luo, Ting [2 ]
Song, Yang
机构
[1] Ningbo Univ, Sch Math & Stat, Ningbo 315211, Peoples R China
[2] Ningbo Univ, Fac Informat Sci & Engn, Ningbo 315211, Peoples R China
关键词
Frequency domain; Latent diffusion model; Underwater image enhancement;
D O I
10.1016/j.patcog.2024.111198
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The degradation of underwater images, due to complex factors, negatively impacts the performance of underwater visual tasks. However, most underwater image enhancement methods (UIE) have been confined to the spatial domain, disregarding the frequency domain. This limitation hampers the full exploitation of the model's learning and representational capabilities. To address this, a two-stage frequency domain-based latent diffusion model (FD-LDM) is introduced for UIE. Firstly, the model employs a lightweight parameter estimation network (L-PEN) to estimate the degradation parameters of underwater images, thereby mitigating the impact of color bias on the diffusion model. Subsequently, considering the varying degrees of recovery between high and low-frequency images, high and low-frequency priors are extracted in the second stage and integrated with the refined latent diffusion model to enhance the images further. Extensive experiments have confirmed the method's effectiveness and robustness, particularly under color bias scenes.
引用
收藏
页数:12
相关论文
共 40 条
[1]   Sea-thru: A Method For Removing Water From Underwater Images [J].
Akkaynak, Derya ;
Treibitz, Tali .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :1682-1691
[2]   A gated cross-domain collaborative network for underwater object detection [J].
Dai, Linhui ;
Liu, Hong ;
Song, Pinhao ;
Liu, Mengyuan .
PATTERN RECOGNITION, 2024, 149
[3]  
Danier D, 2024, AAAI CONF ARTIF INTE, P1472
[4]   Transmission Estimation in Underwater Single Images [J].
Drews-, P., Jr. ;
do Nascimento, E. ;
Moraes, F. ;
Botelho, S. ;
Campos, M. .
2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2013, :825-830
[5]   Taming Transformers for High-Resolution Image Synthesis [J].
Esser, Patrick ;
Rombach, Robin ;
Ommer, Bjoern .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :12868-12878
[6]   DGD-cGAN: A dual generator for image dewatering and restoration [J].
Gonzalez-Sabbagh, Salma ;
Robles-Kelly, Antonio ;
Gao, Shang .
PATTERN RECOGNITION, 2024, 148
[7]  
Grigorescu E, 2023, Arxiv, DOI [arXiv:2307.02774, DOI 10.1007/978-3-031-73970-5]
[8]   DiffWater: Underwater Image Enhancement Based on Conditional Denoising Diffusion Probabilistic Model [J].
Guan, Meisheng ;
Xu, Haiyong ;
Jiang, Gangyi ;
Yu, Mei ;
Chen, Yeyao ;
Luo, Ting ;
Zhang, Xuebo .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 :2319-2335
[9]  
Ho Jonathan., 2020, P 34 INT C NEURAL IN, P6840, DOI DOI 10.48550/ARXIV.2006.11239
[10]   Fast Underwater Image Enhancement for Improved Visual Perception [J].
Islam, Md Jahidul ;
Xia, Youya ;
Sattar, Junaed .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (02) :3227-3234