An efficient hybrid filter-wrapper method based on improved Harris Hawks optimization for feature selection

被引:0
|
作者
Pirgazi, Jamshid [1 ]
Kallehbasti, Mohammad Mehdi Pourhashem [1 ]
Sorkhi, Ali Ghanbari [1 ]
Kermani, Ali [1 ]
机构
[1] Univ Sci & Technol Mazandaran, Dept Elect & Comp Engn, Behshahr, Iran
关键词
Feature selection; High-dimensional data; Harris Hawks optimization; Global search; PARTICLE SWARM OPTIMIZATION; ALGORITHM; WOLF;
D O I
10.34172/bi.30340
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Introduction: High-dimensional datasets often contain an abundance of features, many of which are irrelevant to the subject of interest. This issue is compounded by the frequently low number of samples and imbalanced class samples. These factors can negatively impact the performance of classification algorithms, necessitating feature selection before classification. The primary objective of feature selection algorithms is to identify a minimal subset of features that enables accurate classification. Methods: In this paper, we propose a two-stage hybrid method for the optimal selection of relevant features. In the first stage, a filter method is employed to assign weights to the features, facilitating the removal of redundant and irrelevant features and reducing the computational cost of classification algorithms. A subset of high-weight features is retained for further processing in the second stage. In this stage, an enhanced Harris Hawks Optimization algorithm and GRASP, augmented with crossover and mutation operators from genetic algorithms, are utilized based on the weights calculated in the first stage to identify the optimal feature set. Results: Experimental results demonstrate that the proposed algorithm successfully identifies the optimal subset of features. Conclusion: The two-stage hybrid method effectively selects the optimal subset of features, improving the performance of classification algorithms on high-dimensional datasets. This approach addresses the challenges posed by the abundance of features, low number of samples, and imbalanced class samples, demonstrating its potential for application in various fields.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] A HYBRID FILTER-WRAPPER FEATURE SELECTION APPROACH FOR AUTHORSHIP ATTRIBUTION
    Ma, Jianbin
    Xue, Bing
    Zhang, Mengjie
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2019, 15 (05): : 1989 - 2006
  • [2] Hybrid Filter-Wrapper Feature Selection Method for Sentiment Classification
    Ansari, Gunjan
    Ahmad, Tanvir
    Doja, Mohammad Najmud
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2019, 44 (11) : 9191 - 9208
  • [3] A new hybrid filter-wrapper feature selection method for clustering based on ranking
    Solorio-Fernandez, Saul
    Ariel Carrasco-Ochoa, J.
    Fco. Martinez-Trinidad, Jose
    NEUROCOMPUTING, 2016, 214 : 866 - 880
  • [4] Using Hybrid Filter-Wrapper Feature Selection With Multi-Objective Improved-Salp Optimization for Crack Severity Recognition
    Elhariri, Esraa
    El-Bendary, Nashwa
    Taie, Shereen A.
    IEEE ACCESS, 2020, 8 : 84290 - 84315
  • [5] An efficient hybrid sine-cosine Harris hawks optimization for low and high-dimensional feature selection
    Hussain, Kashif
    Neggaz, Nabil
    Zhu, William
    Houssein, Essam H.
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 176
  • [6] A metaheuristic based filter-wrapper approach to feature selection for fake news detection
    Zaheer, Hamza
    Rehman, Saif Ur
    Bashir, Maryam
    Ahmad, Mian Aziz
    Ahmad, Faheem
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (34) : 80299 - 80328
  • [7] Hybrid filter-wrapper feature selection using whale optimization algorithm: A multi-objective approach
    Got, Adel
    Moussaoui, Abdelouahab
    Zouache, Djaafar
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 183
  • [8] An Enhanced Binary Multiobjective Hybrid Filter-Wrapper Chimp Optimization Based Feature Selection Method for COVID-19 Patient Health Prediction
    Piri, Jayashree
    Mohapatra, Puspanjali
    Singh, Harprith Kaur Rajinder
    Acharya, Biswaranjan
    Patra, Tapas Kumar
    IEEE ACCESS, 2022, 10 : 100376 - 100396
  • [9] IMOABC: An efficient multi-objective filter-wrapper hybrid approach for high-dimensional feature selection
    Li, Jiahao
    Luo, Tao
    Zhang, Baitao
    Chen, Min
    Zhou, Jie
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2024, 36 (09)
  • [10] An Efficient hybrid filter-wrapper metaheuristic-based gene selection method for high dimensional datasets
    Pirgazi, Jamshid
    Alimoradi, Mohsen
    Abharian, Tahereh Esmaeili
    Olyaee, Mohammad Hossein
    SCIENTIFIC REPORTS, 2019, 9 (1)