INVESTIGATIONS ON A RIEMANNIAN MANIFOLD WITH A SEMI-SYMMETRIC NON-METRIC CONNECTION AND GRADIENT SOLITONS

被引:0
|
作者
De, Krishnendu [1 ]
De, Uday chand [2 ]
Gezer, Aydin [3 ]
机构
[1] Kabi Sukanta Mahavidyalaya, Dept Math, Hooghly 712221, W Bengal, India
[2] Univ Calcutta, Dept Pure Math, 35 Ballygunge Circular Rd, Kolkata 700019, W Bengal, India
[3] Ataturk Univ, Dept Math, Erzurum, Turkiye
来源
KRAGUJEVAC JOURNAL OF MATHEMATICS | 2025年 / 49卷 / 03期
关键词
Riemannian manifolds; gradient Ricci solitons; gradient Yamabe solitons; gradient Einstein solitons; in-quasi Einstein solitons; YAMABE SOLITONS;
D O I
10.46793/KgJMat2503.387D
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article carries out the investigation of a three-dimensional Riemannian manifold N 3 endowed with a semi-symmetric type non-metric connection. Firstly, we construct a non-trivial example to prove the existence of a semi-symmetric type non-metric connection on N 3 . It is established that a N 3 with the semi- symmetric type non-metric connection, whose metric is a gradient Ricci soliton, is a manifold of constant sectional curvature with respect to the semi-symmetric type non-metric connection. Moreover, we prove that if the Riemannian metric of N 3 with the semi-symmetric type non-metric connection is a gradient Yamabe soliton, then either N 3 is a manifold of constant scalar curvature or the gradient Yamabe soliton is trivial with respect to the semi-symmetric type non-metric connection. We also characterize the manifold N 3 with a semi-symmetric type non-metric connection whose metrics are Einstein solitons and in-quasi Einstein solitons of gradient type, respectively.
引用
收藏
页码:387 / 400
页数:14
相关论文
共 50 条
  • [41] RIEMANNIAN MANIFOLDS WITH A SEMI-SYMMETRIC NON-METRIC CONNECTION SATISFYING SOME SEMISYMMETRY CONDITIONS
    Dogru, Yusuf
    Ozgur, Cihan
    Murathan, Cengizhan
    BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 3 (02): : 206 - 212
  • [42] GENERIC LIGHTLIKE SUBMANIFOLDS OF AN INDEFINITE KAEHLER MANIFOLD WITH A SEMI-SYMMETRIC NON-METRIC CONNECTION
    Jin, Dae Ho
    PROBLEMY ANALIZA-ISSUES OF ANALYSIS, 2018, 7 (02): : 47 - 68
  • [43] CHEN INEQUALITIES ON LIGHTLIKE HYPERSURFACES OF A LORENTZIAN MANIFOLD WITH SEMI-SYMMETRIC NON-METRIC CONNECTION
    Poyraz, Nergiz
    HONAM MATHEMATICAL JOURNAL, 2022, 44 (03): : 339 - 359
  • [44] HYPERBOLIC KENMOTSU MANIFOLD ADMITTING A NEW TYPE OF SEMI-SYMMETRIC NON-METRIC CONNECTION
    Singh, Abhishek
    Das, Lovejoy S.
    Pankaj
    Patel, Shraddha
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2024, 39 (01): : 123 - 139
  • [45] On Concircular Curvature Tensor with respect to the Semi-symmetric Non-metric Connection in a Kenmotsu Manifold
    Haseeb, Abdul
    KYUNGPOOK MATHEMATICAL JOURNAL, 2016, 56 (03): : 951 - 964
  • [46] NON-DEGENERATE HYPERSURFACES OF A SEMI-RIEMANNIAN MANIFOLD WITH A SEMI-SYMMETRIC METRIC CONNECTION
    Yucesan, Ahmet
    Ayyildiz, Nihat
    ARCHIVUM MATHEMATICUM, 2008, 44 (01): : 77 - 88
  • [47] Lightlike hypersurfaces of a semi-Riemannian manifold with a semi-symmetric metric connection
    Yasar, Erol
    Coeken, A. Ceylan
    Yuecesan, Ahmet
    KUWAIT JOURNAL OF SCIENCE & ENGINEERING, 2007, 34 (2A): : 11 - 24
  • [48] SOME VECTOR FIELDS ON A RIEMANNIAN MANIFOLD WITH SEMI-SYMMETRIC METRIC CONNECTION
    Zengin, F. O.
    Demirbag, S. A.
    Uysal, S. A.
    Yilmaz, H. Bagdatli
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2012, 38 (02): : 479 - 490
  • [49] HALF LIGHTLIKE SUBMANIFOLDS OF A SEMI-RIEMANNIAN SPACE FORM WITH A SEMI-SYMMETRIC NON-METRIC CONNECTION
    Jin, Dae Ho
    JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS, 2014, 21 (01): : 39 - 50
  • [50] On weakly symmetric manifolds with a type of semi-symmetric non-metric connection
    Yilmaz, Hulya Bagdatli
    ANNALES POLONICI MATHEMATICI, 2011, 102 (03) : 301 - 308