INVESTIGATIONS ON A RIEMANNIAN MANIFOLD WITH A SEMI-SYMMETRIC NON-METRIC CONNECTION AND GRADIENT SOLITONS

被引:0
|
作者
De, Krishnendu [1 ]
De, Uday chand [2 ]
Gezer, Aydin [3 ]
机构
[1] Kabi Sukanta Mahavidyalaya, Dept Math, Hooghly 712221, W Bengal, India
[2] Univ Calcutta, Dept Pure Math, 35 Ballygunge Circular Rd, Kolkata 700019, W Bengal, India
[3] Ataturk Univ, Dept Math, Erzurum, Turkiye
来源
KRAGUJEVAC JOURNAL OF MATHEMATICS | 2025年 / 49卷 / 03期
关键词
Riemannian manifolds; gradient Ricci solitons; gradient Yamabe solitons; gradient Einstein solitons; in-quasi Einstein solitons; YAMABE SOLITONS;
D O I
10.46793/KgJMat2503.387D
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article carries out the investigation of a three-dimensional Riemannian manifold N 3 endowed with a semi-symmetric type non-metric connection. Firstly, we construct a non-trivial example to prove the existence of a semi-symmetric type non-metric connection on N 3 . It is established that a N 3 with the semi- symmetric type non-metric connection, whose metric is a gradient Ricci soliton, is a manifold of constant sectional curvature with respect to the semi-symmetric type non-metric connection. Moreover, we prove that if the Riemannian metric of N 3 with the semi-symmetric type non-metric connection is a gradient Yamabe soliton, then either N 3 is a manifold of constant scalar curvature or the gradient Yamabe soliton is trivial with respect to the semi-symmetric type non-metric connection. We also characterize the manifold N 3 with a semi-symmetric type non-metric connection whose metrics are Einstein solitons and in-quasi Einstein solitons of gradient type, respectively.
引用
收藏
页码:387 / 400
页数:14
相关论文
共 50 条
  • [21] Lift of semi-symmetric non-metric connection on a Kähler manifold
    Khan M.N.I.
    Afrika Matematika, 2016, 27 (3-4) : 345 - 352
  • [22] On a Semi-Symmetric Non-Metric Connection in an Indefinite Para Sasakian Manifold
    Pandey, S. K.
    Pandey, G.
    Tiwari, K.
    Singh, R. N.
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2014, 12 (02): : 159 - 172
  • [23] ON A SEMI-SYMMETRIC NON-METRIC CONNECTION IN AN LP-SASAKIAN MANIFOLD
    Perktas, Selcen Yuksel
    Kilic, Erol
    Keles, Sadik
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2010, 3 (02): : 15 - 25
  • [24] ON A TYPE OF SEMI-SYMMETRIC METRIC CONNECTION ON A RIEMANNIAN MANIFOLD
    CHAKI, MC
    KAR, SK
    DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1983, 36 (01): : 57 - 60
  • [25] A Note on Semi-Symmetric Metric Connection in Riemannian Manifold
    Chaturvedi, Braj Bhushan
    Pandey, Pankaj
    THAI JOURNAL OF MATHEMATICS, 2021, 19 (04): : 1199 - 1207
  • [26] Submanifolds of a Riemannian manifold endowed with a new type of semi-symmetric non-metric connection in the tangent bundle
    Khan, Mohammad Nazrul Islam
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2022, 17 (01): : 265 - 275
  • [27] COMPLETE LIFTS OF A SEMI-SYMMETRIC NON-METRIC CONNECTION FROM A RIEMANNIAN MANIFOLD TO ITS TANGENT BUNDLES
    De, Uday Chand
    Khan, Mohammad Nazrul Islam
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2023, 38 (04): : 1233 - 1247
  • [28] RIEMANNIAN SUBMERSIONS ENDOWED WITH A NEW TYPE OF SEMI-SYMMETRIC NON-METRIC CONNECTION
    Karatas, Esra
    Zeren, Semra
    Altin, Mustafa
    THERMAL SCIENCE, 2023, 27 (4B): : 3393 - 3403
  • [29] Lightlike Hypersurfaces of an (ε)-Para Sasakian Manifold with a Semi-Symmetric Non-Metric Connection
    Erdogan, Feyza Esra
    Perktas, Selcen Yuksel
    FILOMAT, 2018, 32 (16) : 5767 - 5786
  • [30] ON A SEMI-SYMMETRIC NON-METRIC CONNECTION IN AN ALMOST KENMOTSU MANIFOLD WITH NULLITY DISTRIBUTION
    Ghosh, Gopal
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2016, 31 (01): : 245 - 257