INVESTIGATIONS ON A RIEMANNIAN MANIFOLD WITH A SEMI-SYMMETRIC NON-METRIC CONNECTION AND GRADIENT SOLITONS

被引:0
|
作者
De, Krishnendu [1 ]
De, Uday chand [2 ]
Gezer, Aydin [3 ]
机构
[1] Kabi Sukanta Mahavidyalaya, Dept Math, Hooghly 712221, W Bengal, India
[2] Univ Calcutta, Dept Pure Math, 35 Ballygunge Circular Rd, Kolkata 700019, W Bengal, India
[3] Ataturk Univ, Dept Math, Erzurum, Turkiye
来源
KRAGUJEVAC JOURNAL OF MATHEMATICS | 2025年 / 49卷 / 03期
关键词
Riemannian manifolds; gradient Ricci solitons; gradient Yamabe solitons; gradient Einstein solitons; in-quasi Einstein solitons; YAMABE SOLITONS;
D O I
10.46793/KgJMat2503.387D
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article carries out the investigation of a three-dimensional Riemannian manifold N 3 endowed with a semi-symmetric type non-metric connection. Firstly, we construct a non-trivial example to prove the existence of a semi-symmetric type non-metric connection on N 3 . It is established that a N 3 with the semi- symmetric type non-metric connection, whose metric is a gradient Ricci soliton, is a manifold of constant sectional curvature with respect to the semi-symmetric type non-metric connection. Moreover, we prove that if the Riemannian metric of N 3 with the semi-symmetric type non-metric connection is a gradient Yamabe soliton, then either N 3 is a manifold of constant scalar curvature or the gradient Yamabe soliton is trivial with respect to the semi-symmetric type non-metric connection. We also characterize the manifold N 3 with a semi-symmetric type non-metric connection whose metrics are Einstein solitons and in-quasi Einstein solitons of gradient type, respectively.
引用
收藏
页码:387 / 400
页数:14
相关论文
共 50 条
  • [1] On Submanifolds in a Riemannian Manifold with a Semi-Symmetric Non-Metric Connection
    Li, Jing
    He, Guoqing
    Zhao, Peibiao
    SYMMETRY-BASEL, 2017, 9 (07):
  • [2] On a type of semi-symmetric non-metric connection on a Riemannian manifold
    Sengupta, J
    De, UC
    Binh, TQ
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2000, 31 (12): : 1659 - 1670
  • [3] On submanifolds of a Riemannian manifold with a semi-symmetric non-metric connection
    Ozgur, Cihan
    KUWAIT JOURNAL OF SCIENCE & ENGINEERING, 2010, 37 (2A): : 17 - 30
  • [4] A SPECIAL TYPE OF SEMI-SYMMETRIC NON-METRIC CONNECTION ON A RIEMANNIAN MANIFOLD
    De, Uday Chand
    Han, Yan Ling
    Zhao, Pei Biao
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2016, 31 (02): : 529 - 541
  • [5] Semi-Riemannian submanifolds of a semi-Riemannian manifold with a semi-symmetric non-metric connection
    Yucesan, Ahmet
    Yasar, Erol
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2012, 27 (04): : 781 - 793
  • [6] LIGHTLIKE SUBMANIFOLDS OF A SEMI-RIEMANNIAN MANIFOLD WITH A SEMI-SYMMETRIC NON-METRIC CONNECTION
    Yucesan, Ahmet
    Yasar, Erol
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2010, 47 (05) : 1089 - 1103
  • [7] TANGENT BUNDLES ENDOWED WITH SEMI-SYMMETRIC NON-METRIC CONNECTION ON A RIEMANNIAN MANIFOLD
    Khan, Mohammad Nazrul Islam
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2021, 36 (04): : 855 - 878
  • [8] LIGHTLIKE SUBMANIFOLDS OF A SEMI-RIEMANNIAN MANIFOLD WITH A SEMI-SYMMETRIC NON-METRIC CONNECTION
    Jin, Dae Ho
    JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS, 2012, 19 (03): : 211 - 228
  • [9] Lightlike hypersurfaces in semi-Riemannian manifold with semi-symmetric non-metric connection
    Yasar, Erol
    Coken, A. Ceylan
    Yucesan, Ahmet
    MATHEMATICA SCANDINAVICA, 2008, 102 (02) : 253 - 264
  • [10] η-Ricci-Bourguignon solitons with a semi-symmetric metric and semi-symmetric non-metric connection
    Dogru, Yusuf
    AIMS MATHEMATICS, 2023, 8 (05): : 11943 - 11952