SSLMM: Semi-Supervised Learning with Missing Modalities for Multimodal Sentiment Analysis

被引:0
|
作者
Wang, Yiyu [1 ]
Jian, Haifang [2 ,3 ]
Zhuang, Jian [4 ]
Guo, Huimin [2 ,3 ]
Leng, Yan [1 ]
机构
[1] Shandong Normal Univ, Sch Phys & Elect, Jinan 250358, Peoples R China
[2] Chinese Acad Sci, Lab Solid State Optoelect Informat Technol, Inst Semicond, Beijing 100083, Peoples R China
[3] Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Dalian Univ Technol, Sch Comp Sci & Technol, Dalian 116023, Liaoning, Peoples R China
关键词
Multimodal sentiment analysis; Semi-supervised learning; Missing modalities;
D O I
10.1016/j.inffus.2025.103058
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multimodal Sentiment Analysis (MSA) integrates information from text, audio, and visuals to understand human emotions, but real-world applications face two challenges: (1) expensive annotation costs reduce the effectiveness of fully supervised methods, and (2) missing modality severely impact model robustness. While there are studies addressing these issues separately, few focus on solving both within a single framework. In real-world scenarios, these challenges often occur together, necessitating an algorithm that can handle both. To address this, we propose a Semi-Supervised Learning with Missing Modalities (SSLMM) framework. SSLMM combines self-supervised learning, alternating interaction information, semi-supervised learning, and modality reconstruction to tackle label scarcity and modality missing simultaneously. Firstly, SSLMM captures latent structural information through self-supervised pre-training. It then fine-tunes the model using semi- supervised learning and modality reconstruction to reduce dependence on labeled data and improve robustness to modality missing. The framework uses a graph-based architecture with an iterative message propagation mechanism to alternately propagate intra-modal and inter-modal messages, capturing emotional associations within and across modalities. Experiments on CMU-MOSI, CMU-MOSEI, and CH-SIMS demonstrate that under the condition where the proportion of labeled samples and the missing modality rate are both 0.5, SSLMM achieves binary classification (negative vs. positive) accuracies of 80.2%, 81.7%, and 77.1%, respectively, surpassing existing methods.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Approaching Sentiment Analysis by using semi-supervised learning of multi-dimensional classifiers
    Ortigosa-Hernandez, Jonathan
    Diego Rodriguez, Juan
    Alzate, Leandro
    Lucania, Manuel
    Inza, Inaki
    Lozano, Jose A.
    NEUROCOMPUTING, 2012, 92 : 98 - 115
  • [22] Semi-supervised Learning Approach to Generate Neuroimaging Modalities with Adversarial Training
    Nguyen, Harrison
    Luo, Simon
    Ramos, Fabio
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2020, PT II, 2020, 12085 : 409 - 421
  • [23] LSTM Based Semi-supervised Attention Framework for Sentiment Analysis
    Ji, Hanxue
    Rong, Wenge
    Liu, Jingshuang
    Ouyang, Yuanxin
    Xiong, Zhang
    2019 IEEE SMARTWORLD, UBIQUITOUS INTELLIGENCE & COMPUTING, ADVANCED & TRUSTED COMPUTING, SCALABLE COMPUTING & COMMUNICATIONS, CLOUD & BIG DATA COMPUTING, INTERNET OF PEOPLE AND SMART CITY INNOVATION (SMARTWORLD/SCALCOM/UIC/ATC/CBDCOM/IOP/SCI 2019), 2019, : 1170 - 1177
  • [24] Semi-supervised learning with generative model for sentiment classification of stock messages
    Duan, Jiangjiao
    Luo, Banghui
    Zeng, Jianping
    EXPERT SYSTEMS WITH APPLICATIONS, 2020, 158
  • [25] Performance Analysis of Semi-Supervised Learning Methods under Different Missing Label Patterns
    Ilhan, Fatih
    Mumcuoglu, Emre
    2020 28TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2020,
  • [26] On semi-supervised learning
    Cholaquidis, A.
    Fraiman, R.
    Sued, M.
    TEST, 2020, 29 (04) : 914 - 937
  • [27] On semi-supervised learning
    A. Cholaquidis
    R. Fraiman
    M. Sued
    TEST, 2020, 29 : 914 - 937
  • [28] Semi-Supervised Sentiment Classification and Emotion Distribution Learning Across Domains
    Chen, Yufu
    Rao, Yanghui
    Chen, Shurui
    Lei, Zhiqi
    Xie, Haoran
    Lau, Raymond Y. K.
    Yin, Jian
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2023, 17 (05)
  • [29] SEMI-SUPERVISED AND TRANSFER LEARNING APPROACHES FOR LOW RESOURCE SENTIMENT CLASSIFICATION
    Gupta, Rahul
    Sahu, Saurabh
    Espy-Wilson, Carol
    Narayanan, Shrikanth
    2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 5109 - 5113
  • [30] Tag-assisted Multimodal Sentiment Analysis under Uncertain Missing Modalities
    Zeng, Jiandian
    Liu, Tianyi
    Zhou, Jiantao
    PROCEEDINGS OF THE 45TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '22), 2022, : 1545 - 1554