On existence of primitive pairs (ξ plus ξ-1, f(ξ)) with arbitrary traces

被引:0
|
作者
Shukla, Aastha [1 ]
Tiwari, Shailesh Kumar [1 ]
机构
[1] Indian Inst Technol Patna, Dept Math, Patna 801106, Bihar, India
关键词
Field extension; finite field; primitive element; sieve inequality; ELEMENTS; FIELDS;
D O I
10.1080/00927872.2024.2444641
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Fqn be a finite extension of the finite field Fq of degree n, where q is a prime power and n is a positive integer. Suppose a,b is an element of Fq. In this article we search for pairs (q, n) such that there exists a primitive pair (xi+xi-1,f(xi)) with TrFqn/Fq(xi)=a and TrFqn/Fq(xi-1)=b, where xi is a non-zero element of Fqn and f is any non-exceptional rational function in Fqn(x).
引用
收藏
页数:13
相关论文
共 10 条
  • [1] Existence of primitive pairs with two prescribed traces over finite fields
    Choudhary, Aakash
    Sharma, R. K.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2024, 23 (14)
  • [2] Existence of primitive pairs with prescribed traces over finite fields
    Sharma, Hariom
    Sharma, R. K.
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (04) : 1773 - 1780
  • [3] On the existence of r-primitive pairs (α, f (α)) in finite fields
    Zhang, Hanglong
    Cao, Xiwang
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2024, 35 (06) : 725 - 738
  • [4] EXISTENCE OF RATIONAL PRIMITIVE NORMAL PAIRS OVER FINITE FIELDS
    Sharma, Rajendra Kumar
    Takshak, Soniya
    Awasthi, Ambrish
    Sharma, Hariom
    INTERNATIONAL JOURNAL OF GROUP THEORY, 2024, 13 (01)
  • [5] Existence of primitive normal pairs with one prescribed trace over finite fields
    Sharma, Hariom
    Sharma, R. K.
    DESIGNS CODES AND CRYPTOGRAPHY, 2021, 89 (12) : 2841 - 2855
  • [6] On the Existence of Pairs of Primitive and Normal Elements Over Finite Fields
    Carvalho, Cicero
    Guardieiro, Joao Paulo
    Neumann, Victor G. L.
    Tizziotti, Guilherme
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2022, 53 (03): : 677 - 699
  • [7] On the Existence of Pairs of Primitive and Normal Elements Over Finite Fields
    Cícero Carvalho
    João Paulo Guardieiro
    Victor G. L. Neumann
    Guilherme Tizziotti
    Bulletin of the Brazilian Mathematical Society, New Series, 2022, 53 : 677 - 699
  • [8] Existence of primitive normal pairs with one prescribed trace over finite fields
    Hariom Sharma
    R. K. Sharma
    Designs, Codes and Cryptography, 2021, 89 : 2841 - 2855
  • [9] On the existence of r-primitive pairs (α,f(α))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\alpha ,f(\alpha ))$$\end{document} in finite fields
    Hanglong Zhang
    Xiwang Cao
    Applicable Algebra in Engineering, Communication and Computing, 2024, 35 (6) : 725 - 738
  • [10] On the existence of homogeneous semi-regular sequences in F2 [X1,..., Xn]/(X12 ,..., Xn2 )
    Hodges, Timothy J.
    Molina, Sergio D.
    Schlather, Jacob
    JOURNAL OF ALGEBRA, 2017, 476 : 519 - 547