Spatial-spectral collaborative attention network for hyperspectral unmixing

被引:0
作者
Chen, Xiaojie [1 ]
Meng, Fanlei [1 ]
Mo, Ye [1 ]
Sun, Haixin [1 ]
机构
[1] Changchun Univ, Sch Elect Informat & Engn, Changchun, Peoples R China
关键词
Hyperspectral unmixing; transformer; self-cross attention; spatial-spectral domain information; MIXTURE ANALYSIS; IMAGE;
D O I
10.1080/10106049.2024.2417919
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In recent years, the transformer architecture has demonstrated exceptional feature extraction capabilities in the field of computer vision (CV). Building on this, our paper aims to fully exploit the potential of the attention in transformers and apply it to the task of hyperspectral unmixing (HU). We propose the Spatial Spectral Collaborative Attention Network (SSCA-Net) model. We obtain spectral information with continuous spatial attributes from HSIs in advance, and input it into SSCA-Net together with HSIs. The improved self-cross attention can collaboratively extract spatial-spectral domain information of HSIs, thereby obtaining more accurate abundance scores. In addition, we conduct ablation experiments to investigate the influence of attention with various configurations on the performance of the unmixing process. The performance of the proposed model is evaluated on three real-world datasets: Samson, Jasper, and Houston, and compared with the performance of FCLSU, GLMM, DAEU, CNNAEU, CyCU, and DHTN algorithms.
引用
收藏
页数:21
相关论文
共 50 条
[1]   SLIC Superpixels Compared to State-of-the-Art Superpixel Methods [J].
Achanta, Radhakrishna ;
Shaji, Appu ;
Smith, Kevin ;
Lucchi, Aurelien ;
Fua, Pascal ;
Suesstrunk, Sabine .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (11) :2274-2281
[2]  
[Anonymous], 2014, ARXIV PREPRINT ARXIV
[3]  
Ba J, 2014, ACS SYM SER
[4]  
Bank D., 2023, MACHINE LEARNING DAT, P353, DOI [DOI 10.1007/978-3-031-24628-916, 10.1007/978-3-031-24628-9_16, DOI 10.1007/978-3-031-24628-9_16]
[5]   Hyperspectral Remote Sensing Data Analysis and Future Challenges [J].
Bioucas-Dias, Jose M. ;
Plaza, Antonio ;
Camps-Valls, Gustavo ;
Scheunders, Paul ;
Nasrabadi, Nasser M. ;
Chanussot, Jocelyn .
IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2013, 1 (02) :6-36
[6]   Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches [J].
Bioucas-Dias, Jose M. ;
Plaza, Antonio ;
Dobigeon, Nicolas ;
Parente, Mario ;
Du, Qian ;
Gader, Paul ;
Chanussot, Jocelyn .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2012, 5 (02) :354-379
[7]   A VARIABLE SPLITTING AUGMENTED LAGRANGIAN APPROACH TO LINEAR SPECTRAL UNMIXING [J].
Bioucas-Dias, Jose M. .
2009 FIRST WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING, 2009, :1-4
[8]  
Borsoi Ricardo Augusto, 2023, IEEE Transactions on Computational Imaging, P977, DOI 10.1109/TCI.2023.3321985
[9]   Hyperspectral and LiDAR Data Fusion: Outcome of the 2013 GRSS Data Fusion Contest [J].
Debes, Christian ;
Merentitis, Andreas ;
Heremans, Roel ;
Hahn, Juergen ;
Frangiadakis, Nikolaos ;
van Kasteren, Tim ;
Liao, Wenzhi ;
Bellens, Rik ;
Pizurica, Aleksandra ;
Gautama, Sidharta ;
Philips, Wilfried ;
Prasad, Saurabh ;
Du, Qian ;
Pacifici, Fabio .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (06) :2405-2418
[10]  
Doersch C, 2021, Arxiv, DOI [arXiv:1606.05908, 10.48550/arXiv.1606.05908]