Video Frame Interpolation for Large Motion with Generative Prior

被引:0
|
作者
Huang, Yuheng [1 ]
Jia, Xu [1 ]
Su, Xin [1 ]
Zhang, Lu [1 ]
Li, Xiaomin [1 ]
Wang, Qinghe [1 ]
Lu, Huchuan [1 ]
机构
[1] Dalian Univ Technol, Dalian, Peoples R China
来源
PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2024, PT X | 2025年 / 15040卷
基金
中国国家自然科学基金;
关键词
Video frame interpolation; Pre-trained diffusion model; Large motions;
D O I
10.1007/978-981-97-8792-0_28
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Video Frame Interpolation (VFI) is a challenging task, especially when scenarios involve large motions. Most existing methods are based on optical flow, which is difficult to predict when large motions exist. Additionally, due to their lack of prior image knowledge, they tend to generate intermediate frames with artifacts if the predicted optical flow is wrong. In this paper, we propose a novel method based on a pre-trained latent diffusion model (LDM). Firstly, we freeze most of the parameters to preserve the rich image prior knowledge and powerful generation capabilities of the LDM. Secondly, we inflate our model to handle videos and adopt a multi-scale spatial-temporal attention module to enhance the ability to process large motions. Finally, information from the input frames is utilized to assist in reconstructing details in the output frames, further enhancing the quality of the output frames. The experimental results demonstrate that our method achieves excellent performance in both natural and animated videos with large motions. Specifically, our method achieves state-of-the-art performance on the animated dataset, showcasing remarkable outputs with nearly no artifacts.
引用
收藏
页码:402 / 415
页数:14
相关论文
共 50 条
  • [31] BVI-VFI: A Video Quality Database for Video Frame Interpolation
    Danier, Duolikun
    Zhang, Fan
    Bull, David R.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 6004 - 6019
  • [32] Textural Detail Preservation Network for Video Frame Interpolation
    Yoon, Kihwan
    Huh, Jingang
    Kim, Yong Han
    Kim, Sungjei
    Jeong, Jinwoo
    IEEE ACCESS, 2023, 11 : 71994 - 72006
  • [33] Video Frame Interpolation Based on Symmetric and Asymmetric Motions
    Choi, Whan
    Koh, Yeong Jun
    Kim, Chang-Su
    IEEE ACCESS, 2023, 11 : 22394 - 22403
  • [34] Multi-Scale Warping for Video Frame Interpolation
    Choi, Whan
    Koh, Yeong Jun
    Kim, Chang-Su
    IEEE ACCESS, 2021, 9 : 150470 - 150479
  • [35] FloLPIPS: A Bespoke Video Quality Metric for Frame Interpolation
    Danier, Duolikun
    Zhang, Fan
    Bull, David
    2022 PICTURE CODING SYMPOSIUM (PCS), 2022, : 283 - 287
  • [36] Video Frame Interpolation With Stereo Event and Intensity Cameras
    Ding, Chao
    Lin, Mingyuan
    Zhang, Haijian
    Liu, Jianzhuang
    Yu, Lei
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 9187 - 9202
  • [37] Video Frame Interpolation via Generalized Deformable Convolution
    Shi, Zhihao
    Liu, Xiaohong
    Shi, Kangdi
    Dai, Linhui
    Chen, Jun
    IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 426 - 439
  • [38] A New Approach to Video Coding Leveraging Hybrid Coding and Video Frame Interpolation
    Brascher, Andre Beims
    da Silveira, Gabriela Furtado
    Cancellier, Luiz Henrique
    Seidel, Ismael
    Grellert, Mateus
    Guntzel, Jose Luis
    2023 36TH SBC/SBMICRO/IEEE/ACM SYMPOSIUM ON INTEGRATED CIRCUITS AND SYSTEMS DESIGN, SBCCI, 2023, : 161 - 166
  • [39] Flow Guidance Deformable Compensation Network for Video Frame Interpolation
    Lei, Pengcheng
    Fang, Faming
    Zeng, Tieyong
    Zhang, Guixu
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 1801 - 1812
  • [40] ASVFI: AUDIO-DRIVEN SPEAKER VIDEO FRAME INTERPOLATION
    Wang, Qianrui
    Li, Dengshi
    Liao, Liang
    Song, Hao
    Li, Wei
    Xiao, Jing
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 3200 - 3204