Low-Temperature Photooxidation of Ethylene on Rutile TiO2(110)

被引:0
作者
Liu, Jiawang [1 ,2 ]
Zeng, Yi [1 ,2 ]
Lai, Yuemiao [1 ,2 ]
Chen, Xiao [3 ]
Wang, Tao [1 ,2 ]
Li, Fangliang [1 ,2 ]
Guo, Qing [1 ,2 ]
机构
[1] Southern Univ Sci & Technol, Shenzhen Key Lab Energy Chem, Shenzhen 518055, Guangdong, Peoples R China
[2] Southern Univ Sci & Technol, Dept Chem, Shenzhen 518055, Guangdong, Peoples R China
[3] Inst Adv Sci Facil, Shenzhen 518107, Guangdong, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
PHOTOCATALYTIC OXIDATION; EPOXIDATION; SURFACE; OXYGEN; SILVER; ADSORPTION; O-2; OXAMETALLACYCLE; CHEMISORPTION; 2-IODOETHANOL;
D O I
10.1021/acs.energyfuels.4c06412
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The conversion of ethylene (C2H4) with photocatalysis provides an alternative to traditional C2H4 conversion into acetaldehyde (CH3CHO) processes in industrial production. Herein, low-temperature C2H4 oxidation is conducted on rutile (R)-TiO2(110) under the third-harmonic (343 nm) and fourth-harmonic (257 nm) outputs of the laser. The results illustrate that both hole-trapped bridging oxygen (Ob -) and Ti5c bound oxygen adatom (OTi -) are photoactive for C2H4 conversion. The former is strongly wavelength-dependent, which mainly induces C2H4 dehydrogenation into the C2H3 center dot radical, which follows an Eley-Rideal (E-R) type direct mechanism. Conversely, the latter induces two parallel reaction pathways to produce C2H2 via the elimination pathway and acetaldehyde (CH3CHO) via the addition pathway. The latter pathway may undergo formation of oxometallacycle intermediates on the surface. These results not only achieve C2H4 direct conversion into useful partial oxidation products via photocatalysis but also further deepen the understanding of the nature of C-H activation.
引用
收藏
页码:5929 / 5937
页数:9
相关论文
共 50 条
[1]  
Smidt J., Hafner W., Jira R., Sedlmeier J., Sieber R., Ruttinger R., Kojer H., Katalytische Umsetzungen von Olefinen an Platinmetall-Verbindungen das Consortium-Verfahren zur Herstellung von Acetaldehyd, Angew. Chem., Int. Ed., 71, pp. 176-182, (1959)
[2]  
Eckert M., Fleischmann G., Jira R., Bolt H.M., Golka K., Acetaldehyde, Ullmann’s Encyclopedia of Industrial Chemistry, (2006)
[3]  
Jira R., Acetaldehyde from Ethylene─a Retrospective on the Discovery of the Wacker Process, Angew. Chem., Int. Ed., 48, pp. 9034-9037, (2009)
[4]  
Sonawat D., Granowski P., DuBridge T.T., Krishna S.H., Effects of Pd Site Structure and Interconversion on Wacker Oxidation of Ethylene over PdCu/Zeolites, J. Catal., 442, (2025)
[5]  
Farhanian D., Haghighat F., Photocatalytic Oxidation Air Cleaner: Identification and Quantification of By-Products, Build. Sci., 72, pp. 34-43, (2014)
[6]  
Jiang Z., Chen M., Shi J., Yuan J., Shangguan W., Catalysis Removal of Indoor Volatile Organic Compounds in Room Temperature: from Photocatalysis to Active Species Assistance Catalysis, Catal. Surv. Asia, 19, pp. 1-16, (2015)
[7]  
Park D.R., Zhang J., Ikeue K., Yamashita H., Anpo M., Photocatalytic Oxidation of Ethylene to CO<sub>2</sub> and H<sub>2</sub>O on Ultrafine Powdered TiO<sub>2</sub> Photocatalysts in the Presence of O<sub>2</sub> and H<sub>2</sub>O, J. Catal., 185, pp. 114-119, (1999)
[8]  
Fu X., Clark L.A., Yang Q., Anderson M.A., Environ. Enhanced Photocatalytic Performance of Titania-Based Binary Metal Oxides: TiO<sub>2</sub>/SiO<sub>2</sub> and TiO<sub>2</sub>/ZrO<sub>2</sub>, Sci. Technol., 30, pp. 647-653, (1996)
[9]  
Fu X., Clark L.A., Zeltner W.A., Anderson M.A.J., Photochem. Effects of Reaction Temperature and Water Vapor Content on the Heterogeneous Photocatalytic Oxidation of Ethylene, J. Photochem. Photobiol., A, 97, pp. 181-186, (1996)
[10]  
Li F., Wang B., Chen X., Zeng W., Sun R., Liu X., Ren Z., Yang X., Fan H., Guo Q., Photocatalytic C-H Bond Activation of Toluene on Rutile TiO<sub>2</sub>(110), J. Phys. Chem. C, 126, pp. 11963-11970, (2022)