Large language models to facilitate pregnancy prediction after in vitro fertilization

被引:0
作者
Cao, Ping [1 ,2 ]
Acharya, Ganesh [3 ,4 ,5 ]
Salumets, Andres [3 ,4 ,6 ,7 ]
Esteki, Masoud Zamani [1 ,2 ,3 ,4 ]
机构
[1] Maastricht Univ Med Ctr MUMC, Dept Clin Genet, Maastricht, Netherlands
[2] Maastricht Univ, GROW Res Inst Oncol & Reprod, Fac Hlth Med & Life Sci FHML, Dept Genet & Cell Biol, Maastricht, Netherlands
[3] Karolinska Inst, Dept Clin Sci Intervent & Technol CLINTEC, Div Obstet & Gynecol, SE-14186 Stockholm, Sweden
[4] Karolinska Univ Hosp, Stockholm, Sweden
[5] UiT The Arctic Univ Norway, Dept Clin Med, Womens Hlth & Perinatol Res Grp, Tromso, Norway
[6] Competence Ctr Hlth Technol, Tartu, Estonia
[7] Univ Tartu, Inst Clin Med, Dept Obstet & Gynecol, Tartu, Estonia
基金
欧盟地平线“2020”;
关键词
artificial intelligence; ChatGPT; in vitro fertilization; large language models; machine learning; ARTIFICIAL-INTELLIGENCE; PLOIDY;
D O I
10.1111/aogs.14989
中图分类号
R71 [妇产科学];
学科分类号
100211 ;
摘要
We evaluated the efficacy of large language models (LLMs), specifically, generative pre-trained transformer-4 (GPT-4), in predicting pregnancy following in vitro fertilization (IVF) treatment and compared its accuracy with results from an original published study. Our findings revealed that GPT-4 can autonomously develop and refine advanced machine learning models for pregnancy prediction with minimal human intervention. The prediction accuracy was 0.79, and the area under the receiver operating characteristic curve (AUROC) was 0.89, exceeding or being at least equivalent to the metrics reported in the original study, that is, 0.78 for accuracy and 0.87 for AUROC. The results suggest that LLMs can facilitate data processing, optimize machine learning models in predicting IVF success rates, and provide data interpretation methods. This capacity can help bridge the knowledge gap between data scientists and medical personnel to solve the most pressing clinical challenges. However, more experiments on diverse and larger datasets are needed to validate and promote broader applications of LLMs in assisted reproduction.
引用
收藏
页码:6 / 12
页数:7
相关论文
共 35 条
  • [1] Using ChatGPT to write patient clinic letters
    Ali, Stephen R.
    Dobbs, Thomas D.
    Hutchings, Hayley A.
    Whitaker, Iain S.
    [J]. LANCET, 2023, 5 (04) : E179 - E181
  • [2] Artificial intelligence in scientific writing: a friend or a foe?
    Altmae, Signe
    Sola-Leyva, Alberto
    Salumets, Andres
    [J]. REPRODUCTIVE BIOMEDICINE ONLINE, 2023, 47 (01) : 3 - 9
  • [3] Large language models streamline automated machine learning for clinical studies
    Arasteh, Soroosh Tayebi
    Han, Tianyu
    Lotfinia, Mahshad
    Kuhl, Christiane
    Kather, Jakob Nikolas
    Truhn, Daniel
    Nebelung, Sven
    [J]. NATURE COMMUNICATIONS, 2024, 15 (01)
  • [4] Bachmann M., 2024, NPJ WOMENS HLTH, V2, P26
  • [5] An enhanced clot growth rate before in vitro fertilization decreases the probability of pregnancy
    Balandina, A. N.
    Koltsova, E. M.
    Teterina, T. A.
    Yakovenko, A. G.
    Simonenko, E. U.
    Poletaev, A. V.
    Zorina, I. V.
    Shibeko, A. M.
    Vuimo, T. A.
    Yakovenko, S. A.
    Ataullakhanov, F. I.
    [J]. PLOS ONE, 2019, 14 (05):
  • [6] A non-invasive artificial intelligence approach for the prediction of human blastocyst ploidy: a retrospective model development and validation study
    Barnes, Josue
    Brendel, Matthew
    Gao, Vianne R.
    Rajendran, Suraj
    Kim, Junbum
    Li, Qianzi
    Malmsten, Jonas E.
    Sierra, Jose
    Zisimopoulos, Pantelis
    Sigaras, Alexandros
    Khosravi, Pegah
    Meseguer, Marcos
    Zhan, Qiansheng
    Rosenwaks, Zev
    Elemento, Olivier
    Zaninovic, Nikica
    Hajirasouliha, Iman
    [J]. LANCET DIGITAL HEALTH, 2023, 5 (01): : E28 - E40
  • [7] Predictive Value of Basal Serum Progesterone for Successful IVF in Endometriosis Patients: The Need for a Personalized Approach
    Bila, Jovan
    Dotlic, Jelena
    Radjenovic, Svetlana Spremovic
    Vidakovic, Snezana
    Tulic, Lidija
    Micic, Jelena
    Stojnic, Jelena
    Babovic, Ivana
    Dmitrovic, Aleksandar
    Chiantera, Vito
    Lagana, Antonio Simone
    Terzic, Milan
    [J]. JOURNAL OF PERSONALIZED MEDICINE, 2022, 12 (10):
  • [8] Performance of a deep learning based neural network in the selection of human blastocysts for implantation
    Bormann, Charles L.
    Kanakasabapathy, Manoj Kumar
    Thirumalaraju, Prudhvi
    Gupta, Raghav
    Pooniwala, Rohan
    Kandula, Hemanth
    Hariton, Eduardo
    Souter, Irene
    Dimitriadis, Irene
    Ramirez, Leslie B.
    Curchoe, Carol L.
    Swain, Jason
    Boehnlein, Lynn M.
    Shafiee, Hadi
    [J]. ELIFE, 2020, 9
  • [9] Generative artificial intelligence to produce high-fidelity blastocyst-stage embryo images
    Cao, Ping
    Derhaag, Josien
    Coonen, Edith
    Brunner, Han
    Acharya, Ganesh
    Salumets, Andres
    Zamani Esteki, Masoud
    [J]. HUMAN REPRODUCTION, 2024, 39 (06) : 1197 - 1207
  • [10] Embryo Ranking Intelligent Classification Algorithm (ERICA): artificial intelligence clinical assistant predicting embryo ploidy and implantation
    Chavez-Badiola, Alejandro
    Flores-Saiffe-Farias, Adolfo
    Mendizabal-Ruiz, Gerardo
    Drakeley, Andrew J.
    Cohen, Jacques
    [J]. REPRODUCTIVE BIOMEDICINE ONLINE, 2020, 41 (04) : 585 - 593