Optimal error estimates for the semi-discrete and fully-discrete finite element schemes of the Allen-Cahn equation

被引:0
作者
Wang, Danxia
Wei, Xuliang [1 ]
Chen, Chuanjun [2 ]
机构
[1] Taiyuan Univ Technol, Sch Math, Taiyuan 030024, Peoples R China
[2] Yantai Univ, Sch Math & Informat Sci, Yantai 264005, Peoples R China
基金
中国国家自然科学基金;
关键词
Allen-Cahn equation; Lagrange multiplier; Error estimates; Polynomial order; PHASE-FIELD MODEL; HILLIARD; APPROXIMATION; EFFICIENT; ENERGY; MOTION;
D O I
10.1016/j.cam.2024.116469
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the numerical approximation of the Allen-Cahn(AC) equation. Firstly, based on the Lagrange multiplier strategy, we present an equivalent form of the AC equation. Secondly, we provide corresponding semi-discrete and fully-discrete finite element schemes which satisfy the energy law of dissipation. Thirdly, we derive optimal error estimates of the semi-discrete and fully-discrete schemes. That is, by eliminating the Lagrange multiplier of the above discrete schemes, we obtain equivalent equations with only the phase field variable, then we establish the L-infinity bounds and H-2 bounds of the numerical solution using mathematical induction. Due to the spatial discretization of the fully-discrete scheme, we derive more necessary conclusions to make preparation for the optimal error estimation. With the use of the spectrum argument, the superconvergence property of nonlinear terms and the mathematical induction, we obtain error bounds that solely depend on low-order polynomial of epsilon(-1) rather than the exponential factor e(T/epsilon 2). Finally, we present some numerical experiments to validate our theoretical convergence analysis.
引用
收藏
页数:25
相关论文
共 51 条
[21]   A SECOND-ORDER MAXIMUM PRINCIPLE PRESERVING LAGRANGE FINITE ELEMENT TECHNIQUE FOR NONLINEAR SCALAR CONSERVATION EQUATIONS [J].
Guermond, Jean-Luc ;
Nazarov, Murtazo ;
Popov, Bojan ;
Yang, Yong .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (04) :2163-2182
[22]   On linear schemes for a Cahn-Hilliard diffuse interface model [J].
Guillen-Gonzalez, F. ;
Tierra, G. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 234 :140-171
[23]   FINITE-ELEMENT APPROXIMATION OF THE NONSTATIONARY NAVIER-STOKES PROBLEM .1. REGULARITY OF SOLUTIONS AND 2ND-ORDER ERROR-ESTIMATES FOR SPATIAL DISCRETIZATION [J].
HEYWOOD, JG ;
RANNACHER, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (02) :275-311
[24]   Approximation of the global attractor for the incompressible Navier-Stokes equations [J].
Hill, AT ;
Süli, E .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2000, 20 (04) :633-667
[25]   A consistent and conservative volume distribution algorithm and its applications to multiphase flows using Phase-Field models [J].
Huang, Ziyang ;
Lin, Guang ;
Ardekani, Arezoo M. .
INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2021, 142
[26]   Consistent and conservative scheme for incompressible two-phase flows using the conservative Allen-Cahn model [J].
Huang, Ziyang ;
Lin, Guang ;
Ardekani, Arezoo M. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 420
[27]   An explicit hybrid finite difference scheme for the Allen-Cahn equation [J].
Jeong, Darae ;
Kim, Junseok .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 340 :247-255
[28]   Fast and accurate algorithms for simulating coarsening dynamics of Cahn-Hilliard equations [J].
Ju, Lili ;
Zhang, Jian ;
Du, Qiang .
COMPUTATIONAL MATERIALS SCIENCE, 2015, 108 :272-282
[29]   Convergence Analysis of Exponential Time Differencing Schemes for the Cahn-Hilliard Equation [J].
Li, Xiao ;
Ju, Lili ;
Meng, Xucheng .
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2019, 26 (05) :1510-1529
[30]   A space-time fractional phase-field model with tunable sharpness and decay behavior and its efficient numerical simulation [J].
Li, Zheng ;
Wang, Hong ;
Yang, Danping .
JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 347 :20-38