机构:
Virginia Commonwealth Univ, Dept Math & Appl Math, 1015 Floyd Ave, Richmond, VA 23284 USAVirginia Commonwealth Univ, Dept Math & Appl Math, 1015 Floyd Ave, Richmond, VA 23284 USA
Cox, Sean
[1
]
Poveda, Alejandro
论文数: 0引用数: 0
h-index: 0
机构:
Harvard Univ, Dept Math, Cambridge, MA USA
Harvard Univ, Ctr Math Sci & Applicat, Cambridge, MA USAVirginia Commonwealth Univ, Dept Math & Appl Math, 1015 Floyd Ave, Richmond, VA 23284 USA
Poveda, Alejandro
[2
,3
]
Trlifaj, Jan
论文数: 0引用数: 0
h-index: 0
机构:
Charles Univ Prague, Fac Math & Phys, Dept Algebra, Prague, Czech RepublicVirginia Commonwealth Univ, Dept Math & Appl Math, 1015 Floyd Ave, Richmond, VA 23284 USA
Trlifaj, Jan
[4
]
机构:
[1] Virginia Commonwealth Univ, Dept Math & Appl Math, 1015 Floyd Ave, Richmond, VA 23284 USA
[2] Harvard Univ, Dept Math, Cambridge, MA USA
[3] Harvard Univ, Ctr Math Sci & Applicat, Cambridge, MA USA
[4] Charles Univ Prague, Fac Math & Phys, Dept Algebra, Prague, Czech Republic
We strengthen a result of Bagaria and Magidor (Trans. Amer. Math. Soc. 366 (2014), no. 4, 1857-1877) about the relationship between large cardinals and torsion classes of abelian groups, and prove that the Maximum Deconstructibility principle introduced in Cox (J. Pure Appl. Algebra 226 (2022), no. 5) requires large cardinals; it sits, implication-wise, between Vop & ecaron;nka's Principle and the existence of an omega 1$\omega _1$-strongly compact cardinal. While deconstructibility of a class of modules always implies the precovering property by Saor & iacute;n and & Scaron;& tcaron;ov & iacute;& ccaron;ek (Adv. Math. 228 (2011), no. 2, 968-1007), the concepts are (consistently) nonequivalent, even for classes of abelian groups closed under extensions, homomorphic images, and colimits.