Approximation properties of torsion classes

被引:0
|
作者
Cox, Sean [1 ]
Poveda, Alejandro [2 ,3 ]
Trlifaj, Jan [4 ]
机构
[1] Virginia Commonwealth Univ, Dept Math & Appl Math, 1015 Floyd Ave, Richmond, VA 23284 USA
[2] Harvard Univ, Dept Math, Cambridge, MA USA
[3] Harvard Univ, Ctr Math Sci & Applicat, Cambridge, MA USA
[4] Charles Univ Prague, Fac Math & Phys, Dept Algebra, Prague, Czech Republic
基金
美国国家科学基金会;
关键词
CATEGORIES;
D O I
10.1112/blms.13169
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We strengthen a result of Bagaria and Magidor (Trans. Amer. Math. Soc. 366 (2014), no. 4, 1857-1877) about the relationship between large cardinals and torsion classes of abelian groups, and prove that the Maximum Deconstructibility principle introduced in Cox (J. Pure Appl. Algebra 226 (2022), no. 5) requires large cardinals; it sits, implication-wise, between Vop & ecaron;nka's Principle and the existence of an omega 1$\omega _1$-strongly compact cardinal. While deconstructibility of a class of modules always implies the precovering property by Saor & iacute;n and & Scaron;& tcaron;ov & iacute;& ccaron;ek (Adv. Math. 228 (2011), no. 2, 968-1007), the concepts are (consistently) nonequivalent, even for classes of abelian groups closed under extensions, homomorphic images, and colimits.
引用
收藏
页码:3819 / 3828
页数:10
相关论文
共 50 条