Hybrid-order topological phase and transition in 1H transition metal compounds

被引:0
作者
Yang, Ning-Jing [1 ,2 ]
Huang, Zhigao [1 ,2 ]
Zhang, Jian-Min [1 ,2 ]
机构
[1] Fujian Normal Univ, Coll Phys & Energy, Fujian Prov Key Lab Quantum Manipulat & New Energy, Fuzhou 350117, Peoples R China
[2] Fujian Prov Collaborat Innovat Ctr Adv High Field, Fuzhou 350117, Peoples R China
基金
中国国家自然科学基金;
关键词
SUPERCONDUCTIVITY; INSULATOR; BULK; BAND; MONOLAYERS; STATES;
D O I
10.1063/5.0238775
中图分类号
O59 [应用物理学];
学科分类号
摘要
Inspired by recent experimental observations of hybrid topological states [Hossain et al. Nature 628, 527 (2024)], we predict hybrid-order topological insulators in 1H transition metal compounds (TMCs), where both second-order and first-order topological (FOT) states coexist near the Fermi level. Initially, 1H-TMCs exhibit a second-order topological phase due to the d orbital bandgap. Upon coupling of p and d orbitals through the crystal field effect, first-order topological characteristics emerge. This hybrid-order topological phase transition can be tuned via crystal field effects. Combined with first-principles calculations, we illustrate the phase transition with WTe2 and NbSe2. The WTe2 exhibits hybrid-order under ambient conditions, while NbSe2 transitions to hybrid-order under pressure. Additionally, the first-order topological bandgap in the HyOTI demonstrates a strong spin Hall effect. Our findings reveal a hybrid-order topological phase in two-dimensional electron materials and underscore spintronic applications.
引用
收藏
页数:6
相关论文
共 57 条
[1]  
Hossain M.S., Schindler F., Islam R., Muhammad Z., Jiang Y.-X., Cheng Z.-J., Zhang Q., Hou T., Chen H., Litskevich M., Et al., Nature, 628, pp. 527-533, (2024)
[2]  
Zhang X., Lin Z.-K., Wang H.-X., Xiong Z., Tian Y., Lu M.-H., Chen Y.-F., Jiang J.-H., Nat. Commun., 11, (2020)
[3]  
Yang Y., Lu J., Yan M., Huang X., Deng W., Liu Z., Phys. Rev. Lett., 126, (2021)
[4]  
Hasan M.Z., Kane C.L., Colloquium: Topological insulators, Rev. Mod. Phys., 82, pp. 3045-3067, (2010)
[5]  
Qi X.-L., Zhang S.-C., Topological insulators and superconductors, Rev. Mod. Phys., 83, pp. 1057-1110, (2011)
[6]  
Hasan M.Z., Moore J.E., Three-dimensional topological insulators, Annu. Rev. Condens. Matter Phys., 2, pp. 55-78, (2011)
[7]  
Tokura Y., Yasuda K., Tsukazaki A., Magnetic topological insulators, Nat. Rev. Phys., 1, pp. 126-143, (2019)
[8]  
Schindler F., Cook A.M., Vergniory M.G., Wang Z., Parkin S.S., Bernevig B.A., Neupert T., Higher-order topological insulators, Sci. Adv., 4, (2018)
[9]  
Xie B., Wang H.-X., Zhang X., Zhan P., Jiang J.-H., Lu M., Chen Y., Higher-order band topology, Nat. Rev. Phys., 3, pp. 520-532, (2021)
[10]  
Wei Q., Zhang X., Deng W., Lu J., Huang X., Yan M., Chen G., Liu Z., Jia S., 3D hinge transport in acoustic higher-order topological insulators, Phys. Rev. Lett., 127, (2021)