Heterogeneous graph neural network with relation-aware label propagation for unbalanced node classification

被引:0
|
作者
Sun, Chengcheng [1 ,2 ,3 ]
Zhai, Cheng [1 ,2 ]
Feng, Qihan [3 ]
Rui, Xiaobin [3 ]
Wang, Zhixiao [3 ]
机构
[1] China Univ Min & Technol, Sch Safety Engn, Xuzhou, Jiangsu, Peoples R China
[2] China Univ Min & Technol, State Key Lab Coal Mine Disaster Prevent & Control, Xuzhou, Jiangsu, Peoples R China
[3] China Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Heterogeneous graph neural network; Relation-aware label propagation; Unbalanced node classification;
D O I
10.1016/j.physa.2025.130369
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Node classification is one of the core downstream tasks of heterogeneous graph representation learning. However, existing heterogeneous graph neural networks (HGNNs) often exhibit bias toward the majority class, resulting in poor classification performance for the minority classes. Recently, some studies have begun to focus on the imbalance issue in homogeneous graphs. However, due to the inherent heterogeneity and imbalance of heterogeneous graphs, the exploration of imbalanced node classification in heterogeneous graphs remains under-explored. To bridge this gap, this paper investigates the representation learning on heterogeneous graphs and propose a novel model named Heterogeneous Graph Neural Network with Relation-aware Label Propagation (RLP-HGNN). To handle the heterogeneity, we design a relation-aware label propagation to obtain pseudo-labels of nodes in heterogeneous graphs. These pseudo-labels serve as a data augmentation strategy for subsequent phases. Different types of nodes may have different importance, and we adopt dual-level aggregation based on a type-attention mechanism for heterogeneous message passing among different relation subgraphs. To deal with the imbalance issue, we adopt different imbalance strategies to alleviate the classification bias in heterogeneous graphs, including Re-weight, Balanced Softmax, and PC Softmax. By combining relation-aware label propagation and dual-level aggregation into a multi-objective optimization problem, we train the whole model in an end-to-end fashion. We further study the performance of different methods under different imbalance ratio settings. With unbalanced strategies study, ablation analysis, and parameter sensitivity analysis, our experiments on heterogeneous graphs demonstrate the effectiveness and generalizability of our proposed approach in relieving imbalance issues.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] MOBA Game Item Recommendation via Relation-aware Graph Attention Network
    Duan, Lijuan
    Li, Shuxin
    Zhang, Wenbo
    Wang, Wenjian
    2022 IEEE CONFERENCE ON GAMES, COG, 2022, : 338 - 344
  • [42] Label-Enhanced Graph Neural Network for Semi-Supervised Node Classification
    Yu, Le
    Sun, Leilei
    Du, Bowen
    Zhu, Tongyu
    Lv, Weifeng
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (11) : 11529 - 11540
  • [43] Video Captioning via Relation-Aware Graph Learning
    Zheng, Yi
    Jing, Heming
    Xie, Qiujie
    Zhang, Yuejie
    Feng, Rui
    Zhang, Tao
    Gao, Shang
    ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 2023, 2023-June
  • [44] QuatRE: Relation-Aware Quaternions for Knowledge Graph Embeddings
    Dai Quoc Nguyen
    Thanh Vu
    Tu Dinh Nguyen
    Dinh Phung
    COMPANION PROCEEDINGS OF THE WEB CONFERENCE 2022, WWW 2022 COMPANION, 2022, : 189 - 192
  • [45] Relation-Aware Label Smoothing for Self-KD
    Kim, Jeongho
    Woo, Simon S.
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PT II, PAKDD 2024, 2024, 14646 : 197 - 209
  • [46] Attention-Aware Heterogeneous Graph Neural Network
    Zhang, Jintao
    Xu, Quan
    BIG DATA MINING AND ANALYTICS, 2021, 4 (04) : 233 - 241
  • [47] Attention-Aware Heterogeneous Graph Neural Network
    Jintao Zhang
    Quan Xu
    Big Data Mining and Analytics, 2021, 4 (04) : 233 - 241
  • [48] Dual Relation-Aware Entity Alignment for Knowledge Graph
    Zhang, Xin
    Liu, Yu
    Zhao, Zhehuan
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [49] Relation-aware Ensemble Learning for Knowledge Graph Embedding
    Yue, Ling
    Zhang, Yongqi
    Yao, Quanming
    Li, Yong
    Wu, Xian
    Zhang, Ziheng
    Lin, Zhenxi
    Zheng, Yefeng
    2023 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2023), 2023, : 16620 - 16631
  • [50] Graph Embedding Interclass Relation-Aware Adaptive Network for Cross-Scene Classification of Multisource Remote Sensing Data
    Yang, Teng
    Xiao, Song
    Qu, Jiahui
    Dong, Wenqian
    Du, Qian
    Li, Yunsong
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 4459 - 4474