Nonlinear-response theory for lossy superconducting quantum circuits

被引:1
作者
Vadimov, V. [1 ]
Xu, M. [2 ,3 ]
Stockburger, J. T. [2 ,3 ]
Ankerhold, J. [2 ,3 ]
Moettoenen, M. [1 ,4 ]
机构
[1] Aalto Univ, QTF Ctr Excellence, Dept Appl Phys, QCD Labs, POB 15100, FI-00076 Aalto, Finland
[2] Ulm Univ, Inst Complex Quantum Syst, Albert Einstein Allee 11, D-89069 Ulm, Germany
[3] Ulm Univ, IQST, Albert Einstein Allee 11, D-89069 Ulm, Germany
[4] VTT Tech Res Ctr Finland Ltd, QTF Ctr Excellence, POB 1000, FI-02044 Espoo, Finland
来源
PHYSICAL REVIEW RESEARCH | 2025年 / 7卷 / 01期
基金
欧洲研究理事会;
关键词
DISSIPATIVE DYNAMICS; INSULATOR TRANSITION; PHASE-DIAGRAM; ALGORITHM; DECOHERENCE; SYSTEM; OUTPUT; INPUT; STATE;
D O I
10.1103/PhysRevResearch.7.013317
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a numerically exact and computationally feasible nonlinear-response theory developed for lossy superconducting quantum circuits based on a framework of quantum dissipation in a minimally extended state space. Starting from the Feynman-Vernon path-integral formalism for open quantum systems with the system degrees of freedom being the nonlinear elements of the circuit, we eliminate the temporally nonlocal influence functional of all linear elements by introducing auxiliary harmonic modes with complex-valued frequencies coupled to the nonlinear elements. In our work, we propose a concept of time-averaged observables, inspired by experiment, and provide an explicit formula for producing their quasiprobability distribution. We illustrate the consistency of our formalism with the well-established Markovian input-output theory by applying them the dispersive readout of a superconducting transmon qubit. For an important demonstration of our approach beyond weak coupling, we analyze the low-frequency linear response of a capacitively and resistively shunted Josephson junction and observe signatures of a much-debated quantum phase transition at a finite temperature. The developed framework enables a comprehensive fully quantum-mechanical treatment of nonlinear quantum circuits coupled to their environment, without the limitations of typical approaches to weak dissipation, high temperature, and weak drive. This versatile tool paves the way for accurate models of quantum devices and increased fundamental understanding of quanutm mechanics such as that of the quantum measurement.
引用
收藏
页数:29
相关论文
共 118 条
[1]   Quantum bath engineering of a high impedance microwave mode through quasiparticle tunneling [J].
Aiello, Gianluca ;
Fechant, Mathieu ;
Morvan, Alexis ;
Basset, Julien ;
Aprili, Marco ;
Gabelli, Julien ;
Esteve, Jerome .
NATURE COMMUNICATIONS, 2022, 13 (01)
[2]   Non-exponential decay of a giant artificial atom [J].
Andersson, Gustav ;
Suri, Baladitya ;
Guo, Lingzhen ;
Aref, Thomas ;
Delsing, Per .
NATURE PHYSICS, 2019, 15 (11) :1123-1127
[3]   Quantum supremacy using a programmable superconducting processor [J].
Arute, Frank ;
Arya, Kunal ;
Babbush, Ryan ;
Bacon, Dave ;
Bardin, Joseph C. ;
Barends, Rami ;
Biswas, Rupak ;
Boixo, Sergio ;
Brandao, Fernando G. S. L. ;
Buell, David A. ;
Burkett, Brian ;
Chen, Yu ;
Chen, Zijun ;
Chiaro, Ben ;
Collins, Roberto ;
Courtney, William ;
Dunsworth, Andrew ;
Farhi, Edward ;
Foxen, Brooks ;
Fowler, Austin ;
Gidney, Craig ;
Giustina, Marissa ;
Graff, Rob ;
Guerin, Keith ;
Habegger, Steve ;
Harrigan, Matthew P. ;
Hartmann, Michael J. ;
Ho, Alan ;
Hoffmann, Markus ;
Huang, Trent ;
Humble, Travis S. ;
Isakov, Sergei V. ;
Jeffrey, Evan ;
Jiang, Zhang ;
Kafri, Dvir ;
Kechedzhi, Kostyantyn ;
Kelly, Julian ;
Klimov, Paul V. ;
Knysh, Sergey ;
Korotkov, Alexander ;
Kostritsa, Fedor ;
Landhuis, David ;
Lindmark, Mike ;
Lucero, Erik ;
Lyakh, Dmitry ;
Mandra, Salvatore ;
McClean, Jarrod R. ;
McEwen, Matthew ;
Megrant, Anthony ;
Mi, Xiao .
NATURE, 2019, 574 (7779) :505-+
[4]  
Averin D. V., 2012, Macroscopic Quantum Coherence and Quantum Computing
[5]   Minimizing quasiparticle generation from stray infrared light in superconducting quantum circuits [J].
Barends, R. ;
Wenner, J. ;
Lenander, M. ;
Chen, Y. ;
Bialczak, R. C. ;
Kelly, J. ;
Lucero, E. ;
O'Malley, P. ;
Mariantoni, M. ;
Sank, D. ;
Wang, H. ;
White, T. C. ;
Yin, Y. ;
Zhao, J. ;
Cleland, A. N. ;
Martinis, John M. ;
Baselmans, J. J. A. .
APPLIED PHYSICS LETTERS, 2011, 99 (11)
[6]   The multiconfiguration time-dependent Hartree (MCTDH) method:: a highly efficient algorithm for propagating wavepackets [J].
Beck, MH ;
Jäckle, A ;
Worth, GA ;
Meyer, HD .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 324 (01) :1-105
[7]   Formulation of Time-Resolved Counting Statistics Based on a Positive-Operator-Valued Measure [J].
Bednorz, Adam ;
Belzig, Wolfgang .
PHYSICAL REVIEW LETTERS, 2008, 101 (20)
[8]   Quantum computing using dissipation to remain in a decoherence-free subspace [J].
Beige, A ;
Braun, D ;
Tregenna, B ;
Knight, PL .
PHYSICAL REVIEW LETTERS, 2000, 85 (08) :1762-1765
[9]   Circuit quantum electrodynamics [J].
Blais, Alexandre ;
Grimsmo, Arne L. ;
Girvin, S. M. ;
Wallraffe, Andreas .
REVIEWS OF MODERN PHYSICS, 2021, 93 (02)
[10]   Density matrix dynamics in twin-formulation: An efficient methodology based on tensor-train representation of reduced equations of motion [J].
Borrelli, Raffaele .
JOURNAL OF CHEMICAL PHYSICS, 2019, 150 (23)