Hybrid Intersection Over Union Loss for a Robust Small Object Detection in Low-Light Conditions

被引:0
|
作者
Kiobya, Twahir [1 ]
Zhou, Junfeng [1 ]
Maiseli, Baraka [2 ]
Khan, Maqbool [3 ,4 ]
机构
[1] Donghua Univ, Sch Comp Sci & Technol, Shanghai 201620, Peoples R China
[2] Univ Dar es Salaam, Coll Informat & Commun Technol, Dar Es Salaam 14113, Tanzania
[3] Pak Austria Fachhsch Inst Appl Sci & Technol, SPCAI, Harlpur 22621, Pakistan
[4] Software Competence Ctr Hagenberg GmbH, A-4232 Linz, Austria
来源
IEEE ACCESS | 2025年 / 13卷
关键词
Object detection; Lighting; Loss measurement; Location awareness; Histograms; Accuracy; Prediction algorithms; Mathematical models; Image enhancement; Degradation; Small object detection; classification loss; localization loss; intersection over union; ALGORITHM; RETINEX;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In computer vision, most existing works about object detection focus on detecting objects in the good lighting conditions instead of low-light conditions. Even the few existing works that are centered on object detection in the low-light conditions, predominantly focus on the general object detection rather than the detection of small objects. The main challenges affecting small object detection accuracy in low-light conditions are occlusion caused by the low light, shadows, and darkness that adversely affect the surrounding context leading to poor object classification and the insufficient spatial information that negatively affect object localization resulting in poor small object detection. To address the challenge of poor small object detection in low-light conditions we propose the Hybrid Intersection over Union (HIoU) localization loss to enhance the detection accuracy of small objects in these conditions. This loss utilizes the top-bottom distances of the targeted and predicted bounding boxes and the manhattan distance of the boxes' centres to deal with the issue of misalignment that negatively affect the small object detection accuracy. Also, it jointly works with the classification loss to offer a joint optimization that facilitates a network to learn features that are important for both localization and classification. Experimental results show that the proposed loss enhances the detection accuracy of small objects in low-light conditions.
引用
收藏
页码:12321 / 12331
页数:11
相关论文
共 50 条
  • [31] Combined Image Enhancement for Recyclable Waste Object Detection In Low-Light Environment
    Zhang, Junshen
    Kang, Li
    2022 6TH INTERNATIONAL SYMPOSIUM ON COMPUTER SCIENCE AND INTELLIGENT CONTROL, ISCSIC, 2022, : 265 - 269
  • [32] Research on Improved YOLOv5 for Low-Light Environment Object Detection
    Wang, Jing
    Yang, Peng
    Liu, Yuansheng
    Shang, Duo
    Hui, Xin
    Song, Jinhong
    Chen, Xuehui
    ELECTRONICS, 2023, 12 (14)
  • [33] Multispectral Deep Neural Network Fusion Method for Low-Light Object Detection
    Thaker, Keval
    Chennupati, Sumanth
    Rawashdeh, Nathir
    Rawashdeh, Samir A.
    JOURNAL OF IMAGING, 2024, 10 (01)
  • [34] Lightweight Low-Light Object Detection Algorithm Based on YOLOv7
    Li Changyu
    Ge Lei
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (14)
  • [35] LDWLE: self-supervised driven low-light object detection framework
    Shen, Xiaoyang
    Li, Haibin
    Li, Yaqian
    Zhang, Wenming
    COMPLEX & INTELLIGENT SYSTEMS, 2025, 11 (01)
  • [36] Trash to Treasure: Low-Light Object Detection via Decomposition-and-Aggregation
    Cui, Xiaohan
    Ma, Long
    Ma, Tengyu
    Liu, Jinyuan
    Fan, Xin
    Liu, Risheng
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 2, 2024, : 1417 - 1425
  • [37] A Low-Light Object Detection Method Based on SAM-MSFF Network
    Jiang Z.-T.
    Li H.
    Lei X.-C.
    Zhu L.-H.
    Shi D.-Q.
    Zhai F.-S.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2024, 52 (01): : 81 - 93
  • [38] Edge Computing Driven Low-Light Image Dynamic Enhancement for Object Detection
    Wu, Yirui
    Guo, Haifeng
    Chakraborty, Chinmay
    Khosravi, Mohammad R.
    Berretti, Stefano
    Wan, Shaohua
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2023, 10 (05): : 3086 - 3098
  • [39] Degradation-removed multiscale fusion for low-light salient object detection
    Yu, Nana
    Wang, Jie
    Shi, Hong
    Zhang, Zihao
    Han, Yahong
    PATTERN RECOGNITION, 2024, 155
  • [40] Lane Detection in Low-light Conditions Using an Efficient Data Enhancement : Light Conditions Style Transfer
    Liu, Tong
    Chen, Zhaowei
    Yang, Yi
    Wu, Zehao
    Li, Haowei
    2020 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2020, : 1394 - 1399