Hybrid Intersection Over Union Loss for a Robust Small Object Detection in Low-Light Conditions

被引:0
|
作者
Kiobya, Twahir [1 ]
Zhou, Junfeng [1 ]
Maiseli, Baraka [2 ]
Khan, Maqbool [3 ,4 ]
机构
[1] Donghua Univ, Sch Comp Sci & Technol, Shanghai 201620, Peoples R China
[2] Univ Dar es Salaam, Coll Informat & Commun Technol, Dar Es Salaam 14113, Tanzania
[3] Pak Austria Fachhsch Inst Appl Sci & Technol, SPCAI, Harlpur 22621, Pakistan
[4] Software Competence Ctr Hagenberg GmbH, A-4232 Linz, Austria
来源
IEEE ACCESS | 2025年 / 13卷
关键词
Object detection; Lighting; Loss measurement; Location awareness; Histograms; Accuracy; Prediction algorithms; Mathematical models; Image enhancement; Degradation; Small object detection; classification loss; localization loss; intersection over union; ALGORITHM; RETINEX;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In computer vision, most existing works about object detection focus on detecting objects in the good lighting conditions instead of low-light conditions. Even the few existing works that are centered on object detection in the low-light conditions, predominantly focus on the general object detection rather than the detection of small objects. The main challenges affecting small object detection accuracy in low-light conditions are occlusion caused by the low light, shadows, and darkness that adversely affect the surrounding context leading to poor object classification and the insufficient spatial information that negatively affect object localization resulting in poor small object detection. To address the challenge of poor small object detection in low-light conditions we propose the Hybrid Intersection over Union (HIoU) localization loss to enhance the detection accuracy of small objects in these conditions. This loss utilizes the top-bottom distances of the targeted and predicted bounding boxes and the manhattan distance of the boxes' centres to deal with the issue of misalignment that negatively affect the small object detection accuracy. Also, it jointly works with the classification loss to offer a joint optimization that facilitates a network to learn features that are important for both localization and classification. Experimental results show that the proposed loss enhances the detection accuracy of small objects in low-light conditions.
引用
收藏
页码:12321 / 12331
页数:11
相关论文
共 50 条
  • [1] Hybrid Intersection Over Union Loss for a Robust Small Object Detection in Low-Light Conditions
    Kiobya, Twahir
    Zhou, Junfeng
    Maiseli, Baraka
    Khan, Maqbool
    IEEE ACCESS, 2025, 13 : 12321 - 12331
  • [2] Low-light DEtection TRansformer (LDETR): object detection in low-light and adverse weather conditions
    Tiwari A.K.
    Pattanaik M.
    Sharma G.K.
    Multimedia Tools and Applications, 2024, 83 (36) : 84231 - 84248
  • [3] Low-Light Salient Object Detection Meets the Small Size
    Wang, Shiqin
    Xu, Xin
    Chen, Haoyang
    Jiang, Kui
    Wang, Zheng
    Tang, Ke
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024,
  • [4] Fast Convergence Detection Algorithm of Image Small Object Based on Distance Intersection over Union
    Yu, Ziyang
    Yang, Dongsheng
    Wu, Weirong
    Wang, Yingchun
    Luo, Yanhong
    2022 4TH INTERNATIONAL CONFERENCE ON CONTROL AND ROBOTICS, ICCR, 2022, : 330 - 336
  • [5] CLAHE-Based Low-Light Image Enhancement for Robust Object Detection in Overhead Power Transmission System
    Yuan, Zhikang
    Zeng, Jin
    Wei, Zixiang
    Jin, Lijun
    Zhao, Shengjie
    Liu, Xianhui
    Zhang, Yingyao
    Zhou, Gangjie
    IEEE TRANSACTIONS ON POWER DELIVERY, 2023, 38 (03) : 2240 - 2243
  • [6] Enhancing object detection in low-light conditions with adaptive parallel networks
    Fu, Gui
    Chu, Hongyu
    Tu, Xiaoguang
    JOURNAL OF ELECTRONIC IMAGING, 2025, 34 (01)
  • [7] Object detection in low-light conditions based on DBS-YOLOv8
    Zhou, Lei
    Dong, Yanyan
    Ma, Bingya
    Yin, Zhewen
    Lu, Fan
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2025, 28 (01):
  • [8] Deep Enhancement-Object Features Fusion for Low-light Object Detection
    Lim, Wan Teng
    Ang, Kelvin
    Loh, Yuen Peng
    PROCEEDINGS OF THE 4TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA IN ASIA, MMASIA 2022, 2022,
  • [9] An Efficient Intersection Over Union Algorithm for 3D Object Detection
    Mohammed, Sazan Ali Kamal
    Razak, Mohd Zulhakimi Ab
    Abd Rahman, Abdul Hadi
    Abu Bakar, Maria
    IEEE ACCESS, 2024, 12 : 169768 - 169786
  • [10] An Accurate Low-light Object Detection Method Based on Pyramid Networks
    Tao Qingyang
    Ren Kun
    Feng Bo
    Gao Xuejin
    OPTOELECTRONIC IMAGING AND MULTIMEDIA TECHNOLOGY VII, 2020, 11550