Unconditional Energy Stable Runge-Kutta Schemes for a Phase Field Model for Diblock Copolymers

被引:0
作者
Chen, Lizhen [1 ]
Ren, Bo [1 ]
机构
[1] Beijing Computat Sci Res Ctr, Beijing 100193, Peoples R China
基金
中国国家自然科学基金;
关键词
Phase field model; diblock copolymer; auxiliary variable method; Runge-Kutta method; ALLEN-CAHN; NUMERICAL-ANALYSIS; EFFICIENT; EQUATION;
D O I
10.4208/eajam.2023-192.221023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A high-accuracy and unconditional energy stable numerical scheme for a phase field model for diblock copolymers (PF-BCP model) is developed. The PF-BCP model is reformulated into an equivalent model, which based on scaler auxiliary variable (SAV) formulation. After that a stable Runge-Kutta (RK) method and a Fourier-spectral method are applied to the SAV-reformulated PF-BCP model to discretize on the temporal and spatial dimensions respectively. The fully discretized numerical scheme is computed by fixed-point iterations. Meanwhile, the unconditional energy decay property is proved rigorously. Finally, we present the results of numerical experiments to show the accuracy and efficiency of the RK scheme used and discuss the influence of physical parameters and initial conditions on the phase separation in the simulation of the PF-BCP model. In addition, the energy decay property of the numerical solutions is verified.
引用
收藏
页码:53 / 79
页数:27
相关论文
共 20 条
[1]   ENERGY-DECAYING EXTRAPOLATED RK-SAV METHODS FOR THE ALLEN-CAHN AND CAHN-HILLIARD EQUATIONS [J].
Akrivis, Georgios ;
Li, Buyang ;
li, Dongfang .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (06) :A3703-A3727
[2]   A MIXED DISCONTINUOUS GALERKIN, CONVEX SPLITTING SCHEME FOR A MODIFIED CAHN-HILLIARD EQUATION AND AN EFFICIENT NONLINEAR MULTIGRID SOLVER [J].
Aristotelous, Andreas C. ;
Krakashian, Ohannes ;
Wise, Steven M. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2013, 18 (09) :2211-2238
[3]   NUMERICAL SCHEMES FOR A THREE COMPONENT CAHN-HILLIARD MODEL [J].
Boyer, Franck ;
Minjeaud, Sebastian .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2011, 45 (04) :697-738
[4]   ON THE PHASE DIAGRAM FOR MICROPHASE SEPARATION OF DIBLOCK COPOLYMERS: AN APPROACH VIA A NONLOCAL CAHN-HILLIARD FUNCTIONAL [J].
Choksi, Rustum ;
Peletier, Mark A. ;
Williams, J. F. .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2009, 69 (06) :1712-1738
[5]  
Eyre D.J., 1997, An unconditionally stable one-step scheme for gradient systems
[6]  
Feng JJ, 2005, IMA VOL MATH APPL, V141, P1
[7]   Numerical analysis of the Allen-Cahn equation and approximation for mean curvature flows [J].
Feng, XB ;
Prohl, A .
NUMERISCHE MATHEMATIK, 2003, 94 (01) :33-65
[8]   Energy-stable Runge-Kutta schemes for gradient flow models using the energy quadratization approach [J].
Gong, Yuezheng ;
Zhao, Jia .
APPLIED MATHEMATICS LETTERS, 2019, 94 :224-231
[9]  
Hairer E., 1996, Solving Ordinary Differential Equations II: Stiff and Differential Algebraic Problems, VII
[10]   A HIGHLY EFFICIENT AND ACCURATE NEW SCALAR AUXILIARY VARIABLE APPROACH FOR GRADIENT FLOWS [J].
Huang, Fukeng ;
Shen, Jie ;
Yang, Zhiguo .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (04) :A2514-A2536