Automatic Classification of Signal and Noise in Functional Magnetic Resonance Imaging Scans Using Convolutional Neural Networks

被引:0
作者
Arighelescu, Georgian [1 ]
Chira, Camelia [1 ]
Mansson, Kristoffer N. T. [2 ,3 ]
机构
[1] Babes Bolyai Univ, Fac Math & Comp Sci, Cluj Napoca, Romania
[2] Babes Bolyai Univ, Dept Clin Psychol & Psychotherapy, Cluj Napoca, Romania
[3] Karolinska Inst, Ctr Psychiat Res, Dept Clin Neurosci, Stockholm, Sweden
来源
INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2024, PT I | 2025年 / 15346卷
关键词
fMRI; Artificial Intelligence; Deep Learning; CNN; VGG16; ResNet50; INDEPENDENT COMPONENT ANALYSIS;
D O I
10.1007/978-3-031-77731-8_7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The integration of Artificial Intelligence (AI), particularly deep learning models like VGG16 and ResNet50, in the analysis of functional magnetic resonance imaging (fMRI) data has significantly advanced our understanding of brain functionality and the diagnosis of neurological disorders. This paper explores the application of Convolutional Neural Networks (CNNs) to enhance the accuracy and efficiency of fMRI data analysis, addressing challenges such as high dimensionality, noise, and the need for complex data preprocessing. Our study evaluates the performance of VGG16 and ResNet50 models and one 3D CNN on 2D and 3D fMRI datasets, highlighting the limitations of VGG16 in handling 2D data and demonstrating the superior performance of ResNet50 on balanced and unbalanced datasets. Additionally, we investigate the impact of using 3D data from the Human Connectome Project (HCP), achieving up to 98% accuracy on the validation set. The results indicate that CNNs can effectively replace traditional Independent Component Analysis (ICA) methods by leveraging their capability for automatic feature extraction and end-to-end learning.
引用
收藏
页码:75 / 84
页数:10
相关论文
共 11 条
  • [1] [Anonymous], Insights into Imaging
  • [2] Probabilistic independent component analysis for functional magnetic resonance imaging
    Beckmann, CF
    Smith, SA
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2004, 23 (02) : 137 - 152
  • [3] Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1
  • [4] ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging
    Griffanti, Ludovica
    Salimi-Khorshidi, Gholamreza
    Beckmann, Christian F.
    Auerbach, Edward J.
    Douaud, Gwenaelle
    Sexton, Claire E.
    Zsoldos, Eniko
    Ebmeier, Klaus P.
    Filippini, Nicola
    Mackay, Clare E.
    Moeller, Steen
    Xu, Junqian
    Yacoub, Essa
    Baselli, Giuseppe
    Ugurbil, Kamil
    Miller, Karla L.
    Smith, Stephen M.
    [J]. NEUROIMAGE, 2014, 95 : 232 - 247
  • [5] Deep Residual Learning for Image Recognition
    He, Kaiming
    Zhang, Xiangyu
    Ren, Shaoqing
    Sun, Jian
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 770 - 778
  • [6] Heo Y, 2020, Arxiv, DOI arXiv:2007.08139
  • [7] Automatic denoising of functional MM data: Combining independent component analysis and hierarchical fusion of classifiers
    Salimi-Khorshidi, Gholamreza
    Douaud, Gwenaelle
    Beckmann, Christian F.
    Glasser, Matthew F.
    Griffanti, Ludovica
    Smith, Stephen M.
    [J]. NEUROIMAGE, 2014, 90 : 449 - 468
  • [8] Simonyan K, 2015, Arxiv, DOI [arXiv:1409.1556, 10.48550/arXiv.1409.1556]
  • [9] Suhaimi N.F.M., 2015, ARPN J. Eng. Appl. Sci., V10, P9748
  • [10] Warren J.D., 2022, Br. J. Radiol., V95