Local density based on weighted K-nearest neighbors for density peaks clustering

被引:0
作者
Ding, Sifan [1 ]
Li, Min [1 ]
Huang, Tianyi [1 ,2 ]
Zhu, William [1 ]
机构
[1] Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, Chengdu 610054, Peoples R China
[2] Westlake Univ, Sch Engn, Hangzhou 310030, Peoples R China
基金
中国国家自然科学基金;
关键词
Data clustering; Kernel similarity; Rank order distance; Weighted K-nearest neighbors; Density peak; FAST SEARCH; FIND;
D O I
10.1016/j.knosys.2024.112609
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Density peaks clustering (DPC), a traditional density-based clustering algorithm, has received considerable attention in recent years. DPC identifies clusters by designating density peaks, defined by local density, as cluster centers. However, DPC and its variants often struggle to identify high-density peaks, particularly in datasets with arbitrarily complex shapes. To address this issue, we propose a novel local density measure based on weighted K-nearest neighbors (KNN). First, we construct a new similarity measure, termed the constrained kernel rank-order distance, to determine the KNNs of each point. Next, we develop the concept of weighted KNNs by assigning a weight to each point, representing the probability of it becoming a KNN to other points. Subsequently, we redefine the local density based on the weighted KNN. Finally, we integrate this new local density measure into the DPC framework. Experiments demonstrate that the proposed algorithm outperforms existing DPC algorithms in terms of effectiveness. The source code can be downloaded from https://github.com/Gedanke/dpcCode.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Density Peaks Clustering Algorithm Based on Weighted k-Nearest Neighbors and Geodesic Distance
    Liu, Lina
    Yu, Donghua
    IEEE ACCESS, 2020, 8 : 168282 - 168296
  • [2] Effective Density Peaks Clustering Algorithm Based on the Layered K-Nearest Neighbors and Subcluster Merging
    Ren, Chunhua
    Sun, Linfu
    Yu, Yang
    Wu, Qishi
    IEEE ACCESS, 2020, 8 : 123449 - 123468
  • [3] Study on density peaks clustering based on k-nearest neighbors and principal component analysis
    Du, Mingjing
    Ding, Shifei
    Jia, Hongjie
    KNOWLEDGE-BASED SYSTEMS, 2016, 99 : 135 - 145
  • [4] A Fuzzy Density Peaks Clustering Algorithm Based on Improved DNA Genetic Algorithm and K-Nearest Neighbors
    Zhang, Wenqian
    Zang, Wenke
    INTELLIGENCE SCIENCE AND BIG DATA ENGINEERING, 2018, 11266 : 476 - 487
  • [5] A novel density peaks clustering algorithm for automatic selection of clustering centers based on K-nearest neighbors
    Wang, Zhihe
    Wang, Huan
    Du, Hui
    Chen, Shiyin
    Shi, Xinxin
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (07) : 11875 - 11894
  • [6] Density Peaks Clustering Based on Weighted Local Density Sequence and Nearest Neighbor Assignment
    Yu, Donghua
    Liu, Guojun
    Guo, Maozu
    Liu, Xiaoyan
    Yao, Shuang
    IEEE ACCESS, 2019, 7 : 34301 - 34317
  • [7] Adaptive Density Peaks Clustering Based on K-Nearest Neighbor and Gini Coefficient
    Jiang, Dong
    Zang, Wenke
    Sun, Rui
    Wang, Zehua
    Liu, Xiyu
    IEEE ACCESS, 2020, 8 : 113900 - 113917
  • [8] RETRACTED: Detection of Power Data Outliers Using Density Peaks Clustering Algorithm Based on K-Nearest Neighbors (Retracted Article)
    Li, Qingpeng
    Chen, Lei
    Wang, Yuhan
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2022, 2022
  • [9] Adaptive density peak clustering based on K-nearest neighbors with aggregating strategy
    Liu Yaohui
    Ma Zhengming
    Yu Fang
    KNOWLEDGE-BASED SYSTEMS, 2017, 133 : 208 - 220
  • [10] Density Peaks Clustering Based on Label Propagation and K-Mutual-Nearest Neighbors
    Sun, Liping
    Huang, Fan
    Zheng, Xiaoyao
    Guo, Liangmin
    Yu, Qingying
    Chen, Zhenghua
    Luo, Yonglong
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024,