Measuring state-multipole moments in coherent-population-trapping experiments
被引:0
作者:
Householder, Andrew
论文数: 0引用数: 0
h-index: 0
机构:
Aerosp Corp, Phys Sci Labs, 2310 E El Segundo Blvd, El Segundo, CA 90245 USAAerosp Corp, Phys Sci Labs, 2310 E El Segundo Blvd, El Segundo, CA 90245 USA
Householder, Andrew
[1
]
Ristoff, Nate
论文数: 0引用数: 0
h-index: 0
机构:
Aerosp Corp, Phys Sci Labs, 2310 E El Segundo Blvd, El Segundo, CA 90245 USAAerosp Corp, Phys Sci Labs, 2310 E El Segundo Blvd, El Segundo, CA 90245 USA
Ristoff, Nate
[1
]
Camparo, James
论文数: 0引用数: 0
h-index: 0
机构:
Aerosp Corp, Phys Sci Labs, 2310 E El Segundo Blvd, El Segundo, CA 90245 USAAerosp Corp, Phys Sci Labs, 2310 E El Segundo Blvd, El Segundo, CA 90245 USA
Camparo, James
[1
]
机构:
[1] Aerosp Corp, Phys Sci Labs, 2310 E El Segundo Blvd, El Segundo, CA 90245 USA
The traditional Coherent-Population-Trapping (CPT) approach to atomic signal generation in chip-scale atomic clocks (CSACs) requires circularly polarized light, which creates spin polarization in the vapor and leads to reduced CSAC signal-to-noise ratios. Though various strategies have been developed to mitigate this problem, there is only a superficial and/or empirical understanding of these strategies' efficacies due to the difficulty of measuring ground-state population distributions among hyperfine Zeeman sublevels. Here, we demonstrate an optical technique to measure the first three (density-matrix) state multipole moments of a single ground-state hyperfine manifold. Using this technique, we have discovered that ground-state angular momentum alignment (i.e., the quadrupole moment) can play an important role in CPT signal-to-noise ratios.