6GTelMED: Resources Recommendation Framework on 6G-Enabled Distributed Telemedicine Using Edge-AI

被引:1
作者
Ahmed, Syed Thouheed [1 ]
Patil, Kiran Kumari [2 ,3 ]
Kumar, S. Sreedhar [4 ]
Dhanaraj, Rajesh Kumar [5 ]
Khan, Surbhi Bhatia [6 ,7 ]
Alzahrani, Saeed [8 ]
Rani, Shalli [9 ]
机构
[1] REVA Univ, Sch Comp & Informat Technol, Bengaluru 560064, India
[2] Reva Univ, Univ Ind Interact Ctr, Bengaluru 560064, India
[3] REVA Univ, Sch Comp Sci & Engn, Bengaluru 560064, India
[4] CMR Univ, Sch Engn & Technol, Bengaluru 562149, India
[5] Symbiosis Int, Symbiosis Inst Comp Studies & Res, Pune 411016, India
[6] Univ Salford, Sch Sci Engn & Environm, Salford M5 4WT, England
[7] Chandigarh Univ, Univ Ctr Res & Dev, Mohali 140413, India
[8] King Saud Univ, Coll Business Adm, Management Informat Syst Dept, Riyadh 11451, Saudi Arabia
[9] Chitkara Univ, Inst Engn & Technol, Rajpura 141001, India
关键词
Telemedicine; 6G mobile communication; Resource management; Protocols; Medical services; Servers; Dynamic scheduling; 5G mobile communication; Internet of Things; Artificial intelligence; 6G; telemedicine; Industry; 5.0; resources recommendation; IoT/IoMT; Edge-AI; PATIENT; 6G;
D O I
10.1109/TCE.2024.3473291
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Telemedicine infrastructure is enhanced in recent times and applications developed have adopted base-line networking standards according to 4G/5G and LTE. The major challenge in exiting infrastructural setups is higher-latency and exposed privacy of resources and sensitive information. In this manuscript, we have proposed a 6G enabled resource recommendation framework for telemedicine. The framework is developed on the Edge-AI computational principles to cater the needs and demands of medical devices associated in telemedicine. The approach is to customize the network via Distributed Telemedicine Network (DTN) protocol for edge-devices such IoT/IoMT and medical consumers' calibration on an existing TelMED protocol of dynamic resource allocation. The DTN aims to generate a resource recommendation stack for incoming user demand via 6G spectrum. The edge-AI framework supports resources allocation with minimal latency and delay and improved privacy of data under the operations. The framework further interfaces the Industry 5.0 applications and consumer demands for effective resources allocation, scheduling and monitoring.
引用
收藏
页码:5524 / 5532
页数:9
相关论文
共 24 条
  • [1] Trusted Explainable AI for 6G-Enabled Edge Cloud Ecosystem
    Garg, Sahil
    Kaur, Kuljeet
    Aujla, Gagangeet Singh
    Kaddoum, Georges
    Garigipati, Prasad
    Guizani, Mohsen
    IEEE WIRELESS COMMUNICATIONS, 2023, 30 (03) : 163 - 170
  • [2] Distributed Probabilistic Offloading in Edge Computing for 6G-Enabled Massive Internet of Things
    Liao, Zhuofan
    Peng, Jingsheng
    Huang, Jiawei
    Wang, Jianxin
    Wang, Jin
    Sharma, Pradip Kumar
    Ghosh, Uttam
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (07) : 5298 - 5308
  • [3] Privacy-Preserving AI Framework for 6G-Enabled Consumer Electronics
    Wang, Xin
    Lyu, Jianhui
    Peter, J. Dinesh
    Kim, Byung-Gyu
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2024, 70 (01) : 3940 - 3950
  • [4] 6G-Enabled Edge AI for Metaverse: Challenges, Methods, and Future Research Directions
    Chang L.
    Zhang Z.
    Li P.
    Xi S.
    Guo W.
    Shen Y.
    Xiong Z.
    Kang J.
    Niyato D.
    Qiao X.
    Wu Y.
    Journal of Communications and Information Networks, 2022, 7 (02)
  • [5] AI-Driven Collaborative Resource Allocation for Task Execution in 6G-Enabled Massive IoT
    Lin, Kai
    Li, Yihui
    Zhang, Qiang
    Fortino, Giancarlo
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (07) : 5264 - 5273
  • [6] Edge Computation Offloading With Content Caching in 6G-Enabled IoV
    Zhou, Xuanhong
    Bilal, Muhammad
    Dou, Ruihan
    Rodrigues, Joel J. P. C.
    Zhao, Qingzhan
    Dai, Jianguo
    Xu, Xiaolong
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (03) : 2733 - 2747
  • [7] Res6Edge: An Edge-AI Enabled Resource Sharing Scheme for C-V2X Communications towards 6G
    Sanghvi, Jainam
    Bhattacharya, Pronaya
    Tanwar, Sudeep
    Gupta, Rajesh
    Kumar, Neeraj
    Guizani, Mohsen
    IWCMC 2021: 2021 17TH INTERNATIONAL WIRELESS COMMUNICATIONS & MOBILE COMPUTING CONFERENCE (IWCMC), 2021, : 149 - 154
  • [8] 6G-Enabled IoT Home Environment Control Using Fuzzy Rules
    Wozniak, Marcin
    Zielonka, Adam
    Sikora, Andrzej
    Piran, Md Jalil
    Alamri, Atif
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (07) : 5442 - 5452
  • [9] A Dispersed Federated Learning Framework for 6G-Enabled Autonomous Driving Cars
    Khan, Latif U.
    Tun, Yan Kyaw
    Alsenwi, Madyan
    Imran, Muhammad
    Han, Zhu
    Hong, Choong Seon
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2024, 11 (06): : 5656 - 5667
  • [10] Service Migration Across Edge Devices in 6G-Enabled Internet of Vehicles Networks
    Xu, Xiaolong
    Yao, Liang
    Bilal, Muhammad
    Wan, Shaohua
    Dai, Fei
    Choo, Kim-Kwang Raymond
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (03) : 1930 - 1937