Non-simple polyominoes of Kőnig type and their canonical module

被引:0
|
作者
Dinu, Rodica [1 ,2 ]
Navarra, Francesco [3 ]
机构
[1] Univ Konstanz, Fachbereich Math & Stat, Fach D 197, D-78457 Constance, Germany
[2] Romanian Acad, Inst Math Simion Stoilow, Calea Grivitei 21, Bucharest 010702, Romania
[3] Sabanci Univ, Fac Engn & Nat Sci, TR-34956 Istanbul, Turkiye
关键词
Polyominoes; Binomial ideals; Krull dimension; K & odblac; nig type; Canonical module; IDEALS; VARIETIES;
D O I
10.1016/j.jalgebra.2025.02.034
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the K & odblac;nig type property for non-simple polyominoes. We prove that, for closed path polyominoes, the polyomino ideals are of K & odblac;nig type, extending the results of Herzog and Hibi for simple thin polyominoes. As an application of this result, we give a combinatorial interpretation for the canonical module of the coordinate ring of a sub-class of closed paths, namely circle closed path polyominoes. In this case, we compute also the Cohen-Macaulay type and we show that the coordinate ring is level. (c) 2025 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:351 / 384
页数:34
相关论文
共 4 条
  • [1] Shellable flag simplicial complexes of non-simple polyominoes
    Navarra, Francesco
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2025,
  • [2] Hilbert–Poincaré Series and Gorenstein Property for Some Non-simple Polyominoes
    Carmelo Cisto
    Francesco Navarra
    Rosanna Utano
    Bulletin of the Iranian Mathematical Society, 2023, 49
  • [3] Hilbert-Poincare Series and Gorenstein Property for Some Non-simple Polyominoes
    Cisto, Carmelo
    Navarra, Francesco
    Utano, Rosanna
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2023, 49 (03)
  • [4] Examples of non-simple abelian surfaces over the rationals with non-square order Tate-Shafarevich group
    Keil, Stefan
    JOURNAL OF NUMBER THEORY, 2014, 144 : 25 - 69