Comparative techno-environmental analysis of grey, blue, green/yellow and pale-blue hydrogen production

被引:8
作者
Roy, Riya [1 ]
Antonini, Giorgio [1 ]
Hayibo, Koami S. [1 ]
Rahman, Md Motakabbir [1 ]
Khan, Sara [1 ]
Tian, Wei [2 ]
Boutilier, Michael S. H. [2 ]
Zhang, Wei [2 ]
Zheng, Ying [2 ]
Bassi, Amarjeet [2 ]
Pearce, Joshua M. [1 ,3 ]
机构
[1] Western Univ, Dept Elect & Comp Engn, London, ON, Canada
[2] Western Univ, Dept Chem & Biochem Engn, London, ON, Canada
[3] Western Univ, Ivey Business Sch, London, ON, Canada
基金
加拿大创新基金会; 加拿大自然科学与工程研究理事会;
关键词
Hydrogen; Life cycle analysis; Green hydrogen; Blue hydrogen; Photovoltaic; Solar energy; LIFE-CYCLE ASSESSMENT; IMPACT ASSESSMENT; CRACKING; CAPTURE; FUEL;
D O I
10.1016/j.ijhydene.2025.03.104
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hydrogen holds immense potential to assist in the transition from fossil fuels to sustainable energy sources, but its environmental impact depends on how it is produced. This study introduces the pale-blue hydrogen production method, which is a hybrid approach, utilizing both carbon capture and bioenergy inputs. Comparative life cycle analysis is shown for grey, blue, green and pale-blue hydrogen using cumulative energy demand, carbon footprint (CF), and water footprint. Additionally, the integration of solar-powered production methods (ground-based photovoltaic and floating photovoltaic (FPV) systems) is examined. The results showed blue hydrogen [steam methane reforming (SMR) + 56% carbon capture storage (CCS)] was 72% less, green hydrogen gas membrane (GM) 75% less, blue hydrogen [SMR+90%CCS] 88% less, and green hydrogen FPV have 90% less CF compared to grey hydrogen. Pale-blue hydrogen [50%B-50%G], blue hydrogen (GM + plasma reactor(PR)) PV and blue hydrogen (GM + PR) FPV offset 26, 48 and 52 times the emissions of grey hydrogen.
引用
收藏
页码:200 / 210
页数:11
相关论文
共 100 条
[1]   Microalgae and wastewater treatment [J].
Abdel-Raouf, N. ;
Al-Homaidan, A. A. ;
Ibraheem, I. B. M. .
SAUDI JOURNAL OF BIOLOGICAL SCIENCES, 2012, 19 (03)
[2]  
Agency IE, 2009, World energy outlook
[3]  
Albritton D., 2001, Climate Change 2001: The Scientific Basis
[4]   Blue hydrogen: Current status and future technologies [J].
AlHumaidan, Faisal S. ;
Halabi, Mamun Absi ;
Rana, Mohan S. ;
Vinoba, Mari .
ENERGY CONVERSION AND MANAGEMENT, 2023, 283
[5]  
[Anonymous], U.S. Life Cycle Inventory Database
[6]  
[Anonymous], IEA, P2021, DOI DOI 10.1787/39351842-EN
[7]  
[Anonymous], 2023, Towards hydrogen definitions based on their emissions intensity
[8]  
[Anonymous], 2019, FUTURE HYDROGEN ANAL
[9]   Hydrogen production from natural gas and biomethane with carbon capture and storage - A techno-environmental analysis [J].
Antonini, Cristina ;
Treyer, Karin ;
Streb, Anne ;
van der Spek, Mijndert ;
Bauer, Christian ;
Mazzotti, Marco .
SUSTAINABLE ENERGY & FUELS, 2020, 4 (06) :2967-2986
[10]  
Arzoumanidis I, 2020, PERSPECTIVES SOCIAL, DOI [10.1007/978-3-030-01508-41, DOI 10.1007/978-3-030-01508-41]