Given their diverse techno-functional traits and huge potential in shaping better food textural, nutritional, and flavor attributes, starch-lipid complexes have attracted much effort in the last two decades. The essential aspects concerning the synthesis of starch-lipid complexes were systematically reviewed to establish high-efficiency methods. First, a new 5-level classification system was proposed for the methods applied in literature, which finally assigned them into seventeen groups. Second, the complexation was examined from the perspectvies of substrate traits and operating parameters. As per starch, amylose content, the degree of polymerization, botanical source, crystal form, and short-range order were explored. As per lipid, concentration, alkyl chain length, the degree of unsaturation, the configuration of the double bond, the form of carboxyl group, and the degree and type of esterification were considered. The operating parameters included the compounding temperature, compounding time, pH conditions, starch moisture content, and the addition mode of lipids involved in the preparation of starch-lipid complexes. Third, the strategies for better complexation by starch modification (enzymatic, physical, and chemical), process reinforcement (ultrasound, pullulanase, NaCl, lecithin, and high pressure), and post-synthetic processing were presented. Finally, the challenges and opportunities were proposed. This review provides insights for the comprehensive understanding to the efficient preparation of starchlipid complexes.