Visionary AI Enhancing Diabetic Retinopathy Detection through Image Processing

被引:0
作者
Vinayagam, P. [1 ]
Santhiya, S. [1 ]
Kumar, S. Naveen [1 ]
Kumar, V. Dhanush [1 ]
机构
[1] Saveetha Engn Coll, Dept ECE, Chennai, Tamil Nadu, India
来源
2024 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT CYBER PHYSICAL SYSTEMS AND INTERNET OF THINGS, ICOICI 2024 | 2024年
关键词
Visionary AI; Diabetic Retinopathy; Image Processing; Healthcare; Screening; Early Intervention; Patient Outcomes; SYSTEM;
D O I
10.1109/ICOICI62503.2024.10696561
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The development of Diabetic Retinopathy (DR) necessitates comprehensive screening techniques to avoid visual loss. Existing manual screening techniques are subjective and prone to errors, resulting in delayed diagnosis and poor patient outcomes. In response, the paper introduces a Visionary AI system that transforms DR detection via image processing methods and Convolutional Neural Networks (CNNs). The proposed system decreases the pressure on healthcare personnel by automating analyses and assuring consistency and accuracy. The proposed system outperforms existing systems, achieving 95% accuracy, 92% sensitivity, 96% specificity, and an AUC-ROC value of 0.97. Furthermore, the proposed system demonstrates scalability and adaptability, indicating a larger application in a variety of healthcare contexts. Future research aims to expand the proposed system's capabilities and incorporate it seamlessly into healthcare workflows, with a focus on its ability to greatly improve DR detection and patient outcomes.
引用
收藏
页码:928 / 933
页数:6
相关论文
共 18 条
  • [1] AI-Based Automatic Detection and Classification of Diabetic Retinopathy Using U-Net and Deep Learning
    Bilal, Anas
    Zhu, Liucun
    Deng, Anan
    Lu, Huihui
    Wu, Ning
    [J]. SYMMETRY-BASEL, 2022, 14 (07):
  • [2] Artificial Intelligence-Based Teleopthalmology Application for Diagnosis of Diabetics Retinopathy
    Ghouali, S.
    Onyema, E. M.
    Guellil, M. S.
    Wajid, M. A. A.
    Clare, O.
    Cherifi, W.
    Feham, M.
    [J]. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY, 2022, 3 : 124 - 133
  • [3] Diabetic retinopathy screening in the emerging era of artificial intelligence
    Grauslund, Jakob
    [J]. DIABETOLOGIA, 2022, 65 (09) : 1415 - 1423
  • [4] Guo W., 2022, 2022 4 INT C ROB COM, DOI [10.1109/icrcv55858.2022.9953225, DOI 10.1109/ICRCV55858.2022.9953225]
  • [5] Hassan R., 2020, Identifying the Level of Diabetic Retinopathy Using Deep Convolution Neural Network, DOI [10.1109/etcce51779.2020.9350905, DOI 10.1109/ETCCE51779.2020.9350905]
  • [6] Deep Learning-Based Smart IoT Health System for Blindness Detection Using Retina Images
    Jaiswal, Amit Kumar
    Tiwari, Prayag
    Kumar, Sachin
    Al-Rakhami, Mabrook S.
    Alrashoud, Mubarak
    Ghoneim, Ahmed
    [J]. IEEE ACCESS, 2021, 9 : 70606 - 70615
  • [7] Katada Y., 2020, Intelligence-Based Medicine, V3-4, DOI [10.1016/j.ibmed.2020.100024, DOI 10.1016/J.IBMED.2020.100024]
  • [8] Artificial intelligence for diabetic retinopathy
    Li, Sicong
    Zhao, Ruiwei
    Zou, Haidong
    [J]. CHINESE MEDICAL JOURNAL, 2022, 135 (03) : 253 - 260
  • [9] Maity P., 2023, 2023 7 INT C COMP SY, DOI [10.1109/csitss60515.2023.10334199, DOI 10.1109/CSITSS60515.2023.10334199]
  • [10] Navaneethan S., 2023, 2023 2 INT C AUTOMAT, P543, DOI [10.1109/ICACRS58579.2023.10404679, DOI 10.1109/ICACRS58579.2023.10404679]