Transmission problems for simply connected domains in the complex plane

被引:0
作者
Carro, Maria J. [1 ,2 ]
Naibo, Virginia [3 ]
Soria-Carro, Maria [4 ]
机构
[1] Univ Complutense Madrid, Dept Anal & Appl Math, Plaza Ciencias 3, Madrid 28040, Spain
[2] Inst Ciencias Matemat ICMAT, Madrid, Spain
[3] Kansas State Univ, Dept Math, 138 Cardwell Hall,1228 N Martin Luther King Jr Dr, Manhattan, KS 66506 USA
[4] Rutgers State Univ, Dept Math, 110 Frelinghuysen Rd, Piscataway, NJ 08854 USA
关键词
Transmission problems; Graph simply connected domains; Conformal maps; Muckenhoupt weights; DIRICHLET PROBLEM; REGULARITY; SPACES;
D O I
10.1016/j.jde.2025.113216
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study existence and uniqueness of a transmission problem in simply connected domains in the plane with data in weighted Lebesgue spaces by first investigating solvability results of a related novel problem associated to a homeomorphism in the real line and domains given by the upper and lower half planes. Our techniques are based on the use of conformal maps and Rellich identities for the Hilbert transform, and are motivated by previous works concerning the Dirichlet, Neumann and Zaremba problems. (c) 2025 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:35
相关论文
共 35 条
[1]  
Ahlfors LarsV., 1966, LECT QUASICONFORMAL, V10
[2]   THE BOUNDARY CORRESPONDENCE UNDER QUASICON-FORMAL MAPPINGS [J].
BEURLING, A ;
AHLFORS, L .
ACTA MATHEMATICA, 1956, 96 (1-2) :125-142
[3]   Conformal welding and Koebe's theorem [J].
Bishop, Christopher J. .
ANNALS OF MATHEMATICS, 2007, 166 (03) :613-656
[4]  
BISHOP CJ, 1988, MICH MATH J, V35, P151
[5]   CONFORMAL WELDING OF RECTIFIABLE CURVES [J].
BISHOP, CJ .
MATHEMATICA SCANDINAVICA, 1990, 67 (01) :61-72
[6]  
Borsuk M, 2010, FRONT MATH, P1, DOI 10.1007/978-3-0346-0477-2
[7]  
Caffarelli LA, 2021, ARCH RATION MECH AN, V240, P265, DOI 10.1007/s00205-021-01611-0
[8]  
Campanato S., 1957, Ric. Mat., V6, P125
[9]   Rellich identities for the Hilbert transform [J].
Carro, Maria J. ;
Naibo, Virginia ;
Soria-Carro, Maria .
JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 286 (04)
[10]   On the Dirichlet problem on Lorentz and Orlicz spaces with applications to Schwarz-Christoffel domains [J].
Carro, Maria J. ;
Ortiz-Caraballo, Carmen .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 265 (05) :2013-2033