SLOctolyzer: Fully Automatic Analysis Toolkit for Segmentation and Feature Extracting in Scanning Laser Ophthalmoscopy Images

被引:0
作者
Burke, Jamie [1 ,2 ]
Gibbon, Samuel [2 ]
Engelmann, Justin [3 ,4 ]
Threlfall, Adam [2 ]
Giarratano, Ylenia [3 ]
Hamid, Charlene [5 ]
King, Stuart [1 ]
Maccormick, Ian J. C. [6 ,7 ]
Macgillivray, Thomas J. [2 ,5 ,7 ]
机构
[1] Univ Edinburgh, Sch Math, Edinburgh, Scotland
[2] Univ Edinburgh, Inst Regenerat & Repair, Robert O Curle Ophthalmol Suite, Edinburgh BioQuarter,4-5 Little France Dr, Edinburgh EH16 4UU, Scotland
[3] Univ Edinburgh, Ctr Med Informat, Edinburgh, Scotland
[4] Univ Edinburgh, Sch Informat, Edinburgh, Scotland
[5] Univ Edinburgh, Clin Res Facil & Imaging, Edinburgh, Scotland
[6] Univ Edinburgh, Inst Adapt & Neural Computat, Sch Informat, Edinburgh, Scotland
[7] Univ Edinburgh, Ctr Clin Brain Sci, Edinburgh, Scotland
来源
TRANSLATIONAL VISION SCIENCE & TECHNOLOGY | 2024年 / 13卷 / 11期
基金
英国医学研究理事会;
关键词
scanning laser ophthalmoscopy (SLO); optical coherence tomography (OCT); retina; image analysis; artificial intelligence;
D O I
10.1167/tvst.13.11.7
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Purpose: The purpose of this study was to introduce SLOctolyzer: an open-source analysis toolkit for en face retinal vessels in infrared reflectance scanning laser ophthalmoscopy (SLO) images. Methods: SLOctolyzer includes two main modules: segmentation and measurement. The segmentation module uses deep learning methods to delineate retinal anatomy, and detects the fovea and optic disc, whereas the measurement module quantifies the complexity, density, tortuosity, and caliber of the segmented retinal vessels. We evaluated the segmentation module using unseen data and measured its reproducibility. Results: SLOctolyzer's segmentation module performed well against unseen internal test data (Dice for all-vessels = 0.91; arteries = 0.84; veins = 0.85; optic disc = 0.94; and fovea = 0.88). External validation against severe retinal pathology showed decreased performance (Dice for arteries = 0.72; veins = 0.75; and optic disc = 0.90). SLOctolyzer had good reproducibility (mean difference for fractal dimension = -0.001; density = -0.0003; caliber = -0.32 microns; and tortuosity density = 0.001). SLOctolyzer can process a 768 x 768 pixel macula-centered SLO image in under 20 seconds and a disccentered SLO image in under 30 seconds using a laptop CPU. Conclusions: To our knowledge, SLOctolyzer is the first open-source tool to convert raw SLO images into reproducible and clinically meaningful retinal vascular parameters. It requires no specialist knowledge or proprietary software, and allows manual correction of segmentations and re-computing of vascular metrics. SLOctolyzer is freely available at https://github.com/jaburke166/SLOctolyzer. Translational Relevance: SLO images are captured simultaneous to optical coherence tomography (OCT), and we believe SLOctolyzer will be useful for extracting retinal vascular measurements from large OCT image sets and linking them to ocular or systemic diseases.
引用
收藏
页数:17
相关论文
共 46 条
  • [21] Retinal Vascular Caliber Measurements: Clinical Significance, Current Knowledge and Future Perspectives
    Ikram, M. Kamran
    Ong, Yi Ting
    Cheung, Carol Y.
    Wong, Tien Y.
    [J]. OPHTHALMOLOGICA, 2013, 229 (03) : 125 - 136
  • [22] FutureMS cohort profile: a Scottish multicentre inception cohort study of relapsing-remitting multiple sclerosis
    Kearns, Patrick K. A.
    Martin, Sarah J.
    Chang, Jessie
    Meijboom, Rozanna
    York, Elizabeth N.
    Chen, Yingdi
    Weaver, Christine
    Stenson, Amy
    Hafezi, Katarzyna
    Thomson, Stacey
    Freyer, Elizabeth
    Murphy, Lee
    Harroud, Adil
    Foley, Peter
    Hunt, David
    McLeod, Margaret
    O'Riordan, Jonathon
    Carod-Artal, F. J.
    MacDougall, Niall J. J.
    Baranzini, Sergio E.
    Waldman, Adam D.
    Connick, Peter
    Chandran, Siddharthan
    [J]. BMJ OPEN, 2022, 12 (06):
  • [23] Kingma D.P., 2014, arXiv, DOI 10.48550/arXiv.1412.6980
  • [24] Revised formulas for summarizing retinal vessel diameters
    Knudtson, MD
    Lee, KE
    Hubbard, LD
    Wong, TY
    Klein, R
    Klein, BEK
    [J]. CURRENT EYE RESEARCH, 2003, 27 (03) : 143 - 149
  • [25] An Automated Approach for Localizing Retinal Blood Vessels in Confocal Scanning Laser Ophthalmoscopy Fundus Images
    Kromer, Robert
    Shafin, Rahman
    Boelefahr, Sebastian
    Klemm, Maren
    [J]. JOURNAL OF MEDICAL AND BIOLOGICAL ENGINEERING, 2016, 36 (04) : 485 - 494
  • [26] Loshchilov I, 2019, Arxiv, DOI arXiv:1711.05101
  • [27] A Review on Retinal Blood Vessel Enhancement and Segmentation Techniques for Color Fundus Photography
    Mahapatra S.
    Agrawal S.
    Mishro P.K.
    Panda R.
    Dora L.
    Pachori R.B.
    [J]. Critical Reviews in Biomedical Engineering, 2024, 52 (01) : 41 - 69
  • [28] Towards Standardization of Quantitative Retinal Vascular Parameters: Comparison of SIVA and VAMPIRE Measurements in the Lothian Birth Cohort 1936
    McGrory, Sarah
    Taylor, Adele M.
    Pellegrini, Enrico
    Ballerini, Lucia
    Kirin, Mirna
    Doubal, Fergus N.
    Wardlaw, Joanna M.
    Doney, Alex S. F.
    Dhillon, Baljean
    Starr, John M.
    Trucco, Emanuele
    Deary, Ian J.
    MacGillivray, Thomas J.
    [J]. TRANSLATIONAL VISION SCIENCE & TECHNOLOGY, 2018, 7 (02):
  • [29] A Deep Neural Network for Vessel Segmentation of Scanning Laser Ophthalmoscopy Images
    Meyer, Maria Ines
    Costa, Pedro
    Galdran, Adrian
    Mendonca, Ana Maria
    Campilho, Aurelio
    [J]. IMAGE ANALYSIS AND RECOGNITION, ICIAR 2017, 2017, 10317 : 507 - 515
  • [30] Assessment of changes in optic disc parameters and peripapillary retinal nerve fiber layer thickness in myopic patients and its correlation with axial length and degree of myopia
    Mishra, Alpana
    Pattnaik, Lolly
    Mishra, Suchismita
    Panigrahi, Pradeep Kumar
    Mohanty, Smaraki
    [J]. INDIAN JOURNAL OF OPHTHALMOLOGY, 2022, 70 (12) : 4343 - 4348