SLOctolyzer: Fully Automatic Analysis Toolkit for Segmentation and Feature Extracting in Scanning Laser Ophthalmoscopy Images

被引:0
作者
Burke, Jamie [1 ,2 ]
Gibbon, Samuel [2 ]
Engelmann, Justin [3 ,4 ]
Threlfall, Adam [2 ]
Giarratano, Ylenia [3 ]
Hamid, Charlene [5 ]
King, Stuart [1 ]
Maccormick, Ian J. C. [6 ,7 ]
Macgillivray, Thomas J. [2 ,5 ,7 ]
机构
[1] Univ Edinburgh, Sch Math, Edinburgh, Scotland
[2] Univ Edinburgh, Inst Regenerat & Repair, Robert O Curle Ophthalmol Suite, Edinburgh BioQuarter,4-5 Little France Dr, Edinburgh EH16 4UU, Scotland
[3] Univ Edinburgh, Ctr Med Informat, Edinburgh, Scotland
[4] Univ Edinburgh, Sch Informat, Edinburgh, Scotland
[5] Univ Edinburgh, Clin Res Facil & Imaging, Edinburgh, Scotland
[6] Univ Edinburgh, Inst Adapt & Neural Computat, Sch Informat, Edinburgh, Scotland
[7] Univ Edinburgh, Ctr Clin Brain Sci, Edinburgh, Scotland
来源
TRANSLATIONAL VISION SCIENCE & TECHNOLOGY | 2024年 / 13卷 / 11期
基金
英国医学研究理事会;
关键词
scanning laser ophthalmoscopy (SLO); optical coherence tomography (OCT); retina; image analysis; artificial intelligence;
D O I
10.1167/tvst.13.11.7
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Purpose: The purpose of this study was to introduce SLOctolyzer: an open-source analysis toolkit for en face retinal vessels in infrared reflectance scanning laser ophthalmoscopy (SLO) images. Methods: SLOctolyzer includes two main modules: segmentation and measurement. The segmentation module uses deep learning methods to delineate retinal anatomy, and detects the fovea and optic disc, whereas the measurement module quantifies the complexity, density, tortuosity, and caliber of the segmented retinal vessels. We evaluated the segmentation module using unseen data and measured its reproducibility. Results: SLOctolyzer's segmentation module performed well against unseen internal test data (Dice for all-vessels = 0.91; arteries = 0.84; veins = 0.85; optic disc = 0.94; and fovea = 0.88). External validation against severe retinal pathology showed decreased performance (Dice for arteries = 0.72; veins = 0.75; and optic disc = 0.90). SLOctolyzer had good reproducibility (mean difference for fractal dimension = -0.001; density = -0.0003; caliber = -0.32 microns; and tortuosity density = 0.001). SLOctolyzer can process a 768 x 768 pixel macula-centered SLO image in under 20 seconds and a disccentered SLO image in under 30 seconds using a laptop CPU. Conclusions: To our knowledge, SLOctolyzer is the first open-source tool to convert raw SLO images into reproducible and clinically meaningful retinal vascular parameters. It requires no specialist knowledge or proprietary software, and allows manual correction of segmentations and re-computing of vascular metrics. SLOctolyzer is freely available at https://github.com/jaburke166/SLOctolyzer. Translational Relevance: SLO images are captured simultaneous to optical coherence tomography (OCT), and we believe SLOctolyzer will be useful for extracting retinal vascular measurements from large OCT image sets and linking them to ocular or systemic diseases.
引用
收藏
页数:17
相关论文
共 46 条
  • [1] STATISTICAL METHODS FOR ASSESSING AGREEMENT BETWEEN TWO METHODS OF CLINICAL MEASUREMENT
    BLAND, JM
    ALTMAN, DG
    [J]. LANCET, 1986, 1 (8476) : 307 - 310
  • [2] Repeatability Using Automatic Tracing with Canon OCT-HS100 and Zeiss Cirrus HD-OCT 5000
    Brautaset, Rune
    Birkeldh, Ulrika
    Alstig, Petra Frehr
    Wiken, Petra
    Nilsson, Maria
    [J]. PLOS ONE, 2016, 11 (02):
  • [3] An Open-Source Deep Learning Algorithm for Efficient and Fully Automatic Analysis of the Choroid in Optical Coherence Tomography
    Burke, Jamie
    Engelmann, Justin
    Hamid, Charlene
    Reid-Schachter, Megan
    Pearson, Tom
    Pugh, Dan
    Dhaun, Neeraj
    Storkey, Amos
    King, Stuart
    Macgillivray, Tom J.
    Bernabeu, Miguel O.
    Maccormick, Ian J. C.
    [J]. TRANSLATIONAL VISION SCIENCE & TECHNOLOGY, 2023, 12 (11):
  • [4] Modulation of retinal image vasculature analysis to extend utility and provide secondary value from optical coherence tomography imaging
    Cameron, James R.
    Ballerini, Lucia
    Langan, Clare
    Warren, Claire
    Denholm, Nicholas
    Smart, Katie
    MacGillivray, Thomas J.
    [J]. JOURNAL OF MEDICAL IMAGING, 2016, 3 (02)
  • [5] Longitudinal retinal imaging study of newly diagnosed relapsing-remitting multiple sclerosis in Scottish population: baseline and 12 months follow-up profile of FutureMS retinal imaging cohort
    Chen, Yingdi
    Larraz, Juan
    Wong, Michael
    Kearns, Patrick
    Brown, Fraser
    Martin, Sarah-Jane
    Connick, Peter
    MacDougall, Niall
    Weaver, Christine
    Dhillon, Baljean
    Chandran, Siddharthan
    [J]. BMJ OPEN OPHTHALMOLOGY, 2022, 7 (01):
  • [6] Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
  • [7] Dhaun N., 2014, Optical coherence tomography and nephropathy: the octane study
  • [8] Applicability of Oculomics for Individual Risk Prediction: Repeatability and Robustness of Retinal Fractal Dimension Using DART and AutoMorph
    Engelmann, Justin
    Moukaddem, Diana
    Gago, Lucas
    Strang, Niall
    Bernabeu, Miguel O.
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2024, 65 (06)
  • [9] Choroidalyzer: An Open-Source, End-to-End Pipeline for Choroidal Analysis in Optical Coherence Tomography
    Engelmann, Justin
    Burke, Jamie
    Hamid, Charlene
    Reid-Schachter, Megan
    Pugh, Dan
    Dhaun, Neeraj
    Moukaddem, Diana
    Gray, Lyle
    Strang, Niall
    McGraw, Paul
    Storkey, Amos
    Steptoe, Paul J.
    King, Stuart
    MacGillivray, Tom
    Bernabeu, Miguel O.
    Maccormick, Ian J. C.
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2024, 65 (06)
  • [10] Robust and Efficient Computation of Retinal Fractal Dimension Through Deep Approximation
    Engelmann, Justin
    Villaplana-Velasco, Ana
    Storkey, Amos
    Bernabeu, Miguel O.
    [J]. OPHTHALMIC MEDICAL IMAGE ANALYSIS, OMIA 2022, 2022, 13576 : 84 - 93