SIGMAML: SNR-Guided 5G Mobility Management using Machine Learning Algorithms

被引:0
作者
Bhat, Adnan Farooq [1 ]
Shah, Shahid Mehraj [1 ]
机构
[1] Natl Inst Technol Srinagar, Dept ECE, Commun Control & Learning Lab C2L2, Srinagar, J&K, India
来源
2024 IEEE SPACE, AEROSPACE AND DEFENCE CONFERENCE, SPACE 2024 | 2024年
关键词
Handover; 5G; Mobility Management; Neural Networks; Event A3;
D O I
10.1109/SPACE63117.2024.10667970
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
In the realm of 5G technology, seamless mobility relies heavily on efficient mobility management, particularly handovers (HOs). Our study investigates the parameters of A3 event and their impact on the mean edge signal-to-noise ratio (SNR), a vital but often overlooked metric. Using Deep Neural Networks (DNNs), we establish a detailed connection between A3 parameters and key performance indicators (KPIs). Our analysis highlights the dominance of A3-offset over A3-time to trigger (TTT) in influencing mean edge SNR. While DNNs offer complexity, decision tree provide a balanced trade-off between RMSE and complexity, aiding in optimizing mobility management for enhanced 5G network performance.
引用
收藏
页码:474 / 478
页数:5
相关论文
共 12 条
  • [1] 3GPP, 2022, Rep. TS 38.401
  • [2] 3rd Generation Partnership Project (3GPP), 2022, 38331 3GPP TS
  • [3] [Anonymous], 2012, 36839 3GPP TR
  • [4] Machine Learning Aided Holistic Handover Optimization for Emerging Networks
    Bin Farooq, Muhammad Umar
    Manalastas, Marvin
    Zaidi, Syed Muhammad Asad
    Abu-Dayya, Adnan
    Imran, Ali
    [J]. IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 710 - 715
  • [5] Data Driven Optimization of Inter-Frequency Mobility Parameters for Emerging Multi-band Networks
    Bin Farooq, Muhammad Umar
    Manalastas, Marvin
    Raza, Waseem
    Ijaz, Aneeqa
    Zaidi, Syed Muhammad Asad
    Abu-Dayya, Adnan
    Imran, Ali
    [J]. 2020 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2020,
  • [6] Handover optimisation for high-capacity low-latency 5G NR mmWave communication
    Brilhante, Davi da Silva
    de Rezende, Jose F.
    Marchetti, Nicola
    [J]. AD HOC NETWORKS, 2024, 153
  • [7] Self-Adapting Handover Parameters Optimization for SDN-Enabled UDN
    Huang, Wei
    Wu, Mengting
    Yang, Zongchang
    Sun, Kai
    Zhang, Haijun
    Nallanathan, Arumugam
    [J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (08) : 6434 - 6447
  • [8] A Data-Driven Framework for Inter-Frequency Handover Failure Prediction and Mitigation
    Manalastas, Marvin
    Bin Farooq, Muhammad Umar
    Zaidi, Syed Muhammad Asad
    Abu-Dayya, Adnan
    Imran, Ali
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (06) : 6158 - 6172
  • [9] Handover Reduction in 5G High-Speed Network Using ML-Assisted User-Centric Channel Allocation
    Raeisi, Mostafa
    Sesay, Abu B. B.
    [J]. IEEE ACCESS, 2023, 11 : 84113 - 84133
  • [10] Intelligent Handover Algorithm for Vehicle-to-Network Communications With Double-Deep Q-Learning
    Tan, Kang
    Bremner, Duncan
    Le Kernec, Julien
    Sambo, Yusuf
    Zhang, Lei
    Imran, Muhammad Ali
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (07) : 7848 - 7862