Synthesis, Molecular Structure, and Water Electrolysis Performance of TiO2-Supported Raney-IrO x Nanoparticles for the Acidic Oxygen Evolution Reaction

被引:0
|
作者
Kang, Jiaqi [1 ]
Wang, Xingli [1 ]
Moehle, Sebastian [1 ]
Farhoosh, Shima [1 ,2 ]
Kovacs, Miklos Marton [3 ,4 ]
Schmidt, Johannes [1 ]
Liang, Liang [1 ]
Kroschel, Matthias [1 ]
Selve, Soeren [5 ]
Haumann, Michael [2 ]
Dworschak, Dominik [3 ]
Dau, Holger [2 ]
Strasser, Peter [1 ]
机构
[1] Tech Univ Berlin, Dept Chem, D-10623 Berlin, Germany
[2] Free Univ Berlin, Dept Phys, D-14195 Berlin, Germany
[3] Forschungszentrum Julich, Helmholtz Inst Erlangen Nurnberg Renewable Energy, D-91058 Erlangen, Germany
[4] Friedrich Alexander Univ Erlangen Nurnberg, Dept Chem & Biol Engn, D-91058 Erlangen, Germany
[5] Tech Univ Berlin, Ctr Electron Microscopy ZELMI, D-10623 Berlin, Germany
来源
ACS CATALYSIS | 2025年 / 15卷 / 07期
关键词
electrolysis; iridium; oxygen evolution reaction; PEM water electrolyzer; electrocatalysis; ELECTRONIC-STRUCTURE; IRIDIUM; STABILITY; CATALYSTS; TIO2; ELECTROCATALYSTS; OXIDATION; EFFICIENT;
D O I
10.1021/acscatal.4c06385
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Developing low-cost, highly active, and stable catalysts for the acidic oxygen evolution reaction (OER) at the proton exchange membrane (PEM) water electrolyzer anodes remains a scientific priority. Reducing the iridium loading while increasing the intrinsic activity of the catalysts is essential for cost-effective hydrogen production. Here, we address a family of TiO2-supported Raney-IrO x catalysts with low iridium loading and high activity in single-cell PEM water electrolyzer anode environments. A controlled Raney-type Ni leaching process of pristine, supported IrNi alloy phases forms crystalline IrO x nanoparticles (NPs) featuring metallic Ir-rich cores surrounded by more amorphous IrO x surfaces. This structure is shown to be conducive to catalytic activity and the suppression of membrane poisoning due to Ni degradation. The trace amounts of Ni remaining after leaching in the IrO x NPs result in heterogeneous crystal structure and induce local lattice strain. Further, we synthetically strike a balance between conductivity and activity and succeed to narrow down the notorious large performance gap between liquid electrolyte rotating disk electrodes (RDEs) and single-cell membrane electrode assembly (MEA) electrolyzer measurements. OER stability numbers (S-numbers) of the identified Raney-IrO x anode catalysts surpass commercial IrO2 catalysts, confirming the stability of these catalysts. The PEM electrolyzer tests reveal that Raney-IrO x anodes achieve 3 A cm-2 at 1.8 V with a low geometric Ir loading of ca. 0.3 mgIr cm-2, meeting the technically important power specific Ir utilization target of 0.05 gIr/kW.
引用
收藏
页码:5435 / 5446
页数:12
相关论文
共 50 条
  • [31] FeCoNi(OH)x/Ni mesh electrode boosting oxygen evolution reaction for high-performance alkaline water electrolysis
    Wang, Sen
    Xue, Shixiang
    Tang, Chaojie
    Gao, Huifeng
    Gao, Dingyun
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2023, 129 (11):
  • [32] Surface hydroxylation engineering to boost oxygen evolution reaction on IrO2/TiO2 for PEM water electrolyzer
    Yang, Chenlu
    Ling, Wenhui
    Zhu, Yanping
    Yang, Yunxiao
    Dong, Shu
    Wu, Chengyu
    Wang, Zhangrui
    Yang, Shuai
    Li, Jun
    Wang, Guoliang
    Huang, Yifan
    Yang, Bo
    Cheng, Qingqing
    Liu, Zhi
    Yang, Hui
    APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2024, 358
  • [33] Supporting IrO2 and IrRuOx nanoparticles on TiO2 and Nb-doped TiO2 nanotubes as electrocatalysts for the oxygen evolution reaction
    Radostina V.Genova-Koleva
    Francisco Alcaide
    Garbi?e álvarez
    Pere L.Cabot
    Hans-Jürgen Grande
    María V.Martínez-Huerta
    Oscar Miguel
    Journal of Energy Chemistry , 2019, (07) : 227 - 239
  • [34] High performance fluorine doped (Sn,Ru)O2 oxygen evolution reaction electro-catalysts for proton exchange membrane based water electrolysis
    Kadakia, Karan
    Datta, Moni Kanchan
    Velikokhatnyi, Oleg I.
    Jampani, Prashanth
    Park, Sung Kyoo
    Chung, Sung Jae
    Kumta, Prashant N.
    JOURNAL OF POWER SOURCES, 2014, 245 : 362 - 370
  • [35] Synergistically optimizing the electrocatalytic performance of IrO2 with double doping and bi-directional strains for acidic oxygen evolution reaction
    Wu, Xiao
    Han, Weiwei
    Hao, Shaoyun
    He, Yi
    Lei, Lecheng
    Zhang, Xingwang
    CATALYSIS SCIENCE & TECHNOLOGY, 2024, 14 (16) : 4599 - 4607
  • [36] Effect of the TiO2 crystal structure on the activity of TiO2-supported platinum catalysts for ammonia synthesis via the NO-CO-H2O reaction
    Kobayashi, Keisuke
    Atsumi, Ryousuke
    Manaka, Yuichi
    Matsumoto, Hideyuki
    Nanba, Tetsuya
    CATALYSIS SCIENCE & TECHNOLOGY, 2019, 9 (11) : 2898 - 2905
  • [37] Systematic Study of Oxygen Evolution Reaction Activity and Stability of Sn n Sb m Nb l O x Ternary Oxide-Supported IrO2 Catalysts
    Huang, Mingcheng
    Fan, Li
    Jin, Yiqi
    Niu, Yudi
    Bai, Xiaofang
    Xu, Shaoyi
    Fan, Jiantao
    Li, Hui
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (12) : 6456 - 6466
  • [38] Controlled synthesis of MnO2@TiO2 hybrid nanotube arrays with enhanced oxygen evolution reaction performance
    Li, Xia
    Zhang, Manru
    Zhang, Yong
    Yu, Cuiping
    Qi, Wentao
    Cui, Jiewu
    Wang, Yan
    Qin, Yongqiang
    Liu, Jiaqin
    Shu, Xia
    Chen, Ying
    Xie, Ting
    Wu, Yucheng
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (31) : 14369 - 14378
  • [39] Enhancing the acidic oxygen evolution reaction performance of RuO2-TiO2 by a reduction-oxidation process
    Zhang, Jianjun
    Song, Yi
    Liu, Wenwei
    Zheng, Quan
    Liu, Yu
    Wu, Tianli
    Li, Tao
    NANOTECHNOLOGY, 2024, 35 (34)
  • [40] Electrochemical Activity of a Blue Anatase TiO2 Nanotube Array for the Oxygen Evolution Reaction in Alkaline Water Electrolysis
    Han, Junhyeok
    Choi, Hyejin
    Lee, Gibaek
    Tak, Yongsug
    Yoon, Jeyong
    JOURNAL OF ELECTROCHEMICAL SCIENCE AND TECHNOLOGY, 2016, 7 (01) : 76 - 81