Abundant vortex dynamics in spin-1 Bose-Einstein condensates induced by Rashba spin-orbit coupling

被引:1
|
作者
Zhong, Yu [1 ]
Zhou, Qin [1 ,2 ]
机构
[1] Wuhan Text Univ, Res Ctr Nonlinear Sci, Sch Math & Phys Sci, Res Grp Nonlinear Opt Sci & Technol, Wuhan 430200, Peoples R China
[2] Wuhan Text Univ, State Key Lab New Text Mat & Adv Proc Technol, Wuhan 430200, Peoples R China
关键词
Bose-Einstein condensate; Rashba spin-orbit coupling; Ring dark solitons; Vortex dipoles; WAVES;
D O I
10.1016/j.chaos.2024.115590
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper studies the dynamics of vortices evolved from the ring dark solitons (RDSs) in spin-1 Bose-Einstein condensates with Rashba spin-orbit coupling (SOC). We find that the SOC induces abundant vortex dynamic phenomena, and the numbers of vortex dipoles and lump-like solitons are all determined by the initial depths' weighted average of the three components of RDSs. For a shallow RDS, the ring first expands and then contracts into a mini RDS, eventually evolving into late vortex dipoles. For the RDS with a moderate initial depth, during the contraction of the ring, it evolves into early vortex dipoles or lump-like solitons, and they evolve back into the mini RDS, which then evolves into late vortex dipoles during the expansion process. For the deep and black RDSs, the early vortex dipoles continue to transform between vortex dipoles and lump-like solitons without forming mini RDS. The motions of vortices mentioned above have a higher disorder degree than that in the system without SOC, because the SOC breaks the mirror symmetry of the condensate. Finally, we reveal that the SOC strength only influences the number of late vortex dipoles, while it does not affect the number of early vortex dipoles and lump-like solitons. Stronger SOC intensity results in a shallower critical depth, and vortices form only at or beyond this depth.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Spin-orbit coupling induced displacement and hidden spin textures in spin-1 Bose-Einstein condensates
    Song, Shu-Wei
    Zhang, Yi-Cai
    Wen, Lin
    Wang, Hanquan
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2013, 46 (14)
  • [2] Stable knotted structure in spin-1 Bose-Einstein condensates with spin-orbit coupling
    Liu, Yong-Kai
    Liu, Yun
    Yang, Shi-Jie
    PHYSICAL REVIEW A, 2019, 99 (06)
  • [3] Vector rogue waves in spin-1 Bose-Einstein condensates with spin-orbit coupling
    He, Jun-Tao
    Li, Hui-Jun
    Lin, Ji
    Malomed, Boris A.
    NEW JOURNAL OF PHYSICS, 2024, 26 (09):
  • [4] Gauge-potential-induced vortices in spin-1 Bose-Einstein condensates with spin-orbit coupling
    Jin, Jingiing
    Guo, Hui
    Zhang, Suying
    Yan, Shubin
    ANNALS OF PHYSICS, 2019, 411
  • [5] Vortex Dynamics in Spin-1 Spin-orbit-coupled Rotating Bose-Einstein Condensates
    Qiang Zhao
    Hongjing Bi
    International Journal of Theoretical Physics, 2021, 60 : 2778 - 2789
  • [6] Rashba-type spin-orbit coupling in bilayer Bose-Einstein condensates
    Su, S. -W.
    Gou, S. -C.
    Sun, Q.
    Wen, L.
    Liu, W. -M.
    Ji, A. -C.
    Ruseckas, J.
    Juzeliunas, G.
    PHYSICAL REVIEW A, 2016, 93 (05)
  • [7] Vortex Dynamics in Spin-1 Spin-orbit-coupled Rotating Bose-Einstein Condensates
    Zhao, Qiang
    Bi, Hongjing
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2021, 60 (08) : 2778 - 2789
  • [8] Bessel vortices in spin-1 Bose-Einstein condensates with Zeeman splitting and spin-orbit coupling
    Luo, Huan-Bo
    Zhang, Xin-Feng
    Li, Runhua
    Li, Yongyao
    Liu, Bin
    CHINESE PHYSICS B, 2024, 33 (10)
  • [9] Nonlinear modes coupling of trapped spin-orbit coupled spin-1 Bose-Einstein condensates
    Wang, Jie
    Liang, Jun-Cheng
    Yu, Zi-Fa
    Zhang, An-Qing
    Zhang, Ai-Xia
    Xue, Ju-Kui
    CHINESE PHYSICS B, 2023, 32 (09)
  • [10] Lattice configurations in spin-1 Bose-Einstein condensates with the SU(3) spin-orbit coupling*
    Wang, Ji-Guo
    Li, Yue-Qing
    Dong, Yu-Fei
    CHINESE PHYSICS B, 2020, 29 (10)