On Generalizations of Jacobi-Jordan Algebras

被引:0
|
作者
Abdelwahab, Hani [1 ]
Abdo, Naglaa Fathi [1 ]
Barreiro, Elisabete [2 ]
Sanchez, Jose Maria [3 ]
机构
[1] Mansoura Univ, Fac Sci, Dept Math, Mansoura 35516, Egypt
[2] Univ Coimbra, Dept Math, CMUC, FCTUC, Largo D Dinis, P-3000143 Coimbra, Portugal
[3] Univ Cadiz, Dept Math, Puerto Real 11519, Spain
关键词
Jacobi-Jordan algebras; Jordan algebras; noncommutative Jordan nilalgebras; algebraic classification; CLASSIFICATION;
D O I
10.3390/axioms13110787
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present some generalizations of Jacobi-Jordan algebras. More concretely, we will focus on noncommutative Jacobi-Jordan algebras, Malcev-Jordan algebras, and general Jacobi-Jordan algebras. We adapt a method, used to classify Poisson algebras, in order to classify all general Jacobi-Jordan algebras up to dimension 4, and, in particular, all noncommutative Jacobi-Jordan algebras up to dimension 4. We present the classification of Malcev-Jordan algebras up to dimension 5. As the class of Jacobi-Jordan algebras (commutative algebras that satisfy the Jacobi identity), we find that Malcev-Jordan algebras are Jordan algebras but not necessarily nilpotent. However, we show that the classification of nilpotent Malcev-Jordan algebras is sufficient to obtain the classification of the whole class.
引用
收藏
页数:26
相关论文
共 50 条