Hierarchical Clustering and CoClust Algorithm: A Nested Procedure to Analyse Sustainable Heating Data

被引:0
作者
Di Lascio, F. Marta L. [1 ]
Pappada, Roberta [2 ]
机构
[1] Free Univ Bozen Bolzano, Fac Econ & Management, Bozen Bolzano, Italy
[2] Univ Trieste, Dept Econ Business Math & Stat B de Finetti, Trieste, Italy
来源
COMBINING, MODELLING AND ANALYZING IMPRECISION, RANDOMNESS AND DEPENDENCE, SMPS 2024 | 2024年 / 1458卷
关键词
CoClust; hierarchical clustering; thermal energy demand;
D O I
10.1007/978-3-031-65993-5_10
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work we combine two different clustering methods to investigate district heating data by taking into account both static and dynamic information concerning the buildings energy profile. The idea is to use the hierarchical clustering algorithm based on the Gower's index to find a first partition of buildings based on their static characteristics, such as age class, energy class, and heating surface, and, next, to investigate the within-cluster multivariate dependence of thermal energy demand among buildings. The two-step procedure we propose aims at assessing the usefulness of static information to support the management of energy demand in the urban area. We show the procedure on data concerning the district heating system of the Italian city Bozen-Bolzano.
引用
收藏
页码:85 / 92
页数:8
相关论文
共 14 条
[1]   CLASS OF BIVARIATE DISTRIBUTIONS INCLUDING BIVARIATE LOGISTIC [J].
ALI, MM ;
MIKHAIL, NN ;
HAQ, MS .
JOURNAL OF MULTIVARIATE ANALYSIS, 1978, 8 (03) :405-412
[2]  
Box G. E. P., 1970, Time series analysis, forecasting and control
[3]  
Di Lascio F.M.L., 2023, SHORT PAPERS, P427
[4]  
Di Lascio F.M.L., 2020, Book of Short Papers-SIS 2020, P292
[5]   A spatially-weighted AMH copula-based dissimilarity measure for clustering variables: An application to urban thermal efficiency [J].
Di Lascio, F. Marta L. ;
Menapace, Andrea ;
Pappada, Roberta .
ENVIRONMETRICS, 2024, 35 (01)
[6]   Analysing the relationship between district heating demand and weather conditions through conditional mixture copula [J].
Di Lascio, F. Marta L. ;
Menapace, Andrea ;
Righetti, Maurizio .
ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2021, 28 (01) :53-72
[7]  
Di Lascio FML, 2020, STAT METHOD APPL-GER, V29, P373, DOI 10.1007/s10260-019-00488-4
[8]   Clustering dependent observations with copula functions [J].
Di Lascio, F. Marta L. ;
Giannerini, Simone .
STATISTICAL PAPERS, 2019, 60 (01) :35-51
[9]  
Durante F., 2015, Principles of Copula Theory, DOI [10.1201/b18674, DOI 10.1201/B18674]
[10]   CLUSTER-ANALYSIS [J].
EVERITT, B .
QUALITY & QUANTITY, 1980, 14 (01) :75-100