In-depth analysis of research hotspots and emerging trends in AI for retinal diseases over the past decade

被引:0
作者
Guo, Mingkai [1 ]
Gong, Di [2 ]
Yang, Weihua [2 ]
机构
[1] Guangzhou Med Univ, Sch Clin Med 3, Guangzhou, Peoples R China
[2] Jinan Univ, Shenzhen Eye Hosp, Shenzhen Eye Inst, Shenzhen, Peoples R China
关键词
artificial intelligence; retinal disease; deep learning; machine learning; hotspot; trend; CONVOLUTIONAL NEURAL-NETWORK; IMBALANCED DIABETIC-RETINOPATHY; COHERENCE TOMOGRAPHY IMAGES; MACULAR DEGENERATION; DEEP; CLASSIFICATION; AGE; IDENTIFICATION; SEGMENTATION; PERFORMANCE;
D O I
10.3389/fmed.2024.1489139
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: The application of Artificial Intelligence (AI) in diagnosing retinal diseases represents a significant advancement in ophthalmological research, with the potential to reshape future practices in the field. This study explores the extensive applications and emerging research frontiers of AI in retinal diseases. Objective: This study aims to uncover the developments and predict future directions of AI research in retinal disease over the past decade. Methods: This study analyzes AI utilization in retinal disease research through articles, using citation data sourced from the Web of Science (WOS) Core Collection database, covering the period from January 1, 2014, to December 31, 2023. A combination of WOS analyzer, CiteSpace 6.2 R4, and VOSviewer 1.6.19 was used for a bibliometric analysis focusing on citation frequency, collaborations, and keyword trends from an expert perspective. Results: A total of 2,861 articles across 93 countries or regions were cataloged, with notable growth in article numbers since 2017. China leads with 926 articles, constituting 32% of the total. The United States has the highest h-index at 66, while England has the most significant network centrality at 0.24. Notably, the University of London is the leading institution with 99 articles and shares the highest h-index (25) with University College London. The National University of Singapore stands out for its central role with a score of 0.16. Research primarily spans ophthalmology and computer science, with "network," "transfer learning," and "convolutional neural networks" being prominent burst keywords from 2021 to 2023. Conclusion: China leads globally in article counts, while the United States has a significant research impact. The University of London and University College London have made significant contributions to the literature. Diabetic retinopathy is the retinal disease with the highest volume of research. AI applications have focused on developing algorithms for diagnosing retinal diseases and investigating abnormal physiological features of the eye. Future research should pivot toward more advanced diagnostic systems for ophthalmic diseases.
引用
收藏
页数:18
相关论文
共 110 条
  • [81] The three-dimensional structural configuration of the central retinal vessel trunk and branches as a glaucoma biomarker
    PANDA, S. A. T. I. S. H. K.
    CHEONG, H. A. R. I. S.
    TUN, T. I. N. A.
    CHUANGSUWANICH, T. H. A. N. A. D. E. T.
    KADZIAUSKIENE, A. I. S. T. E.
    SENTHIL, V. I. J. A. Y. A. L. A. K. S. H. M. I.
    KRISHNADAS, R. A. M. A. S. W. A. M. I.
    BUIST, M. A. R. T. I. N. L.
    PERERA, S. H. A. M. I. R. A.
    CHENG, CHING-YU
    AUNG, T. I. N.
    THIERY, A. L. E. X. A. N. D. R. E. H.
    GIRARD, M. I. C. H. A. E. L. J. A.
    [J]. AMERICAN JOURNAL OF OPHTHALMOLOGY, 2022, 240 : 205 - 216
  • [82] An interpretable multiple-instance approach for the detection of referable diabetic retinopathy in fundus images
    Papadopoulos, Alexandros
    Topouzis, Fotis
    Delopoulos, Anastasios
    [J]. SCIENTIFIC REPORTS, 2021, 11 (01)
  • [83] Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning
    Poplin, Ryan
    Varadarajan, Avinash V.
    Blumer, Katy
    Liu, Yun
    McConnell, Michael V.
    Corrado, Greg S.
    Peng, Lily
    Webster, Dale R.
    [J]. NATURE BIOMEDICAL ENGINEERING, 2018, 2 (03): : 158 - 164
  • [84] Segmentation of the foveal microvasculature using deep learning networks
    Prentasic, Pavle
    Heisler, Morgan
    Mammo, Zaid
    Lee, Sieun
    Merkur, Andrew
    Navajas, Eduardo
    Beg, Mirza Faisal
    Sarunic, Marinko
    Loncaric, Sven
    [J]. JOURNAL OF BIOMEDICAL OPTICS, 2016, 21 (07)
  • [85] Joint DR-DME grading classification using optimal feature selection-based deep graph correlation network
    Reddy, V. Purna Chandra
    Gurrala, Kiran Kumar
    [J]. APPLIED SOFT COMPUTING, 2023, 149
  • [86] Unsupervised Identification of Disease Marker Candidates in Retinal OCT Imaging Data
    Seeboeck, Philipp
    Waldstein, Sebastian M.
    Klimscha, Sophie
    Bogunovic, Hrvoje
    Schlegl, Thomas
    Gerendas, Bianca S.
    Donner, Rene
    Schmidt-Erfurth, Ursula
    Langs, Georg
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (04) : 1037 - 1047
  • [87] Automated classifiers for early detection and diagnosis of retinopathy in diabetic eyes
    Somfai, Gabor Mark
    Tatrai, Erika
    Laurik, Lenke
    Varga, Boglarka
    Oelvedy, Veronika
    Jiang, Hong
    Wang, Jianhua
    Smiddy, William E.
    Somogyi, Aniko
    DeBuc, Delia Cabrera
    [J]. BMC BIOINFORMATICS, 2014, 15
  • [88] Multi-scale convolutional neural network for automated AMD classification using retinal OCT images
    Sotoudeh-Paima, Saman
    Jodeiri, Ata
    Hajizadeh, Fedra
    Soltanian-Zadeh, Hamid
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 144
  • [89] Evaluation of Generative Adversarial Networks for High-Resolution Synthetic Image Generation of Circumpapillary Optical Coherence Tomography Images for Glaucoma
    Sreejith Kumar, Ashish Jith
    Chong, Rachel S.
    Crowston, Jonathan G.
    Chua, Jacqueline
    Bujor, Inna
    Husain, Rahat
    Vithana, Eranga N.
    Girard, Michael J. A.
    Ting, Daniel S. W.
    Cheng, Ching-Yu
    Aung, Tin
    Popa-Cherecheanu, Alina
    Schmetterer, Leopold
    Wong, Damon
    [J]. JAMA OPHTHALMOLOGY, 2022, 140 (10) : 974 - 981
  • [90] Dual-input convolutional neural network for glaucoma diagnosis using spectral-domain optical coherence tomography
    Sun, Sukkyu
    Ha, Ahnul
    Kim, Young Kook
    Yoo, Byeong Wook
    Kim, Hee Chan
    Park, Ki Ho
    [J]. BRITISH JOURNAL OF OPHTHALMOLOGY, 2021, 105 (11) : 1555 - 1560