Second-Order Regularity for Degenerate Parabolic Quasi-Linear Equations in the Heisenberg Group

被引:1
作者
Yu, Chengwei [1 ,2 ]
Wang, Huiying [1 ]
Cui, Kunpeng [1 ]
Zhao, Zijing [1 ]
机构
[1] China Fire & Rescue Inst, Dept Basic, 4 Nanyan Rd, Beijing 102202, Peoples R China
[2] Beihang Univ, China Fire & Rescue Inst, Haidian Dist, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
parabolic quasi-linear equation; second-order regularity; Heisenberg group; parabolic p-Laplacian equation; HWloc2,2-regularity; P-LAPLACIAN; C-1; C-ALPHA-REGULARITY;
D O I
10.3390/math12223494
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the Heisenberg group H-n, we obtain the local second-order HWloc2,2 -regularity for the weak solution u to a class of degenerate parabolic quasi-linear equations partial derivative(t)u = Sigma(2n)(i=1) X(i)A(i)(Xu) modeled on the parabolic p-Laplacian equation. Specifically, when 2 <= p <= 4, we demonstrate the integrability of (partial derivative(t)u)(2), namely, partial derivative(t)u is an element of L-loc(2); when 2 <= p < 3, we demonstrate the HWloc2,2 -regularity of u, namely, XXu is an element of L-loc(2). For the HWloc2,2-regularity, when p >= 2, the range of p is optimal compared to the Euclidean case.
引用
收藏
页数:12
相关论文
共 29 条
[1]  
[Anonymous], 1968, Zap. Na. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI)
[2]   Remarks on regularity for p-Laplacian type equations in non-divergence form [J].
Attouchi, Amal ;
Ruosteenoja, Eero .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 265 (05) :1922-1961
[3]   Lipschitz regularity for solutions of the parabolic p-Laplacian in the Heisenberg group [J].
Capogna, Luca ;
Zhong, Xiao ;
Citti, Giovanna .
ANNALES FENNICI MATHEMATICI, 2023, 48 (02) :411-428
[4]   A combined actinometry approach for medium pressure N2-O2 plasmas [J].
Caplinger, James E. ;
Perram, Glen P. ;
Adams, Steven F. .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2021, 3 (01) :1-31
[5]   Regularity of quasi-linear equations with Hormander vector fields of step two [J].
Citti, Giovanna ;
Mukherjee, Shirsho .
ADVANCES IN MATHEMATICS, 2022, 408
[6]  
Cordes H. O., 1961, P S PURE MATH, V4, P157
[7]  
DIBENEDETTO E, 1985, J REINE ANGEW MATH, V357, P1
[8]  
DIBENEDETTO E, 1993, DEGENERATE PARABOLIC
[9]  
Domokos A, 2005, CONTEMP MATH, V370, P17
[10]   Subelliptic Cordes estimates [J].
Domokos, A ;
Manfredi, JJ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (04) :1047-1056