Banach algebra structure in Besov spaces

被引:0
作者
Zhang, Zhaode [1 ]
Liu, Junming [1 ]
Ponnusamy, Saminathan [2 ,3 ]
机构
[1] Guangdong Univ Technol, Sch Math & Stat, Guangzhou 510520, Guangdong, Peoples R China
[2] Indian Inst Technol Madras, Dept Math, Chennai 600036, India
[3] Lomonosov Moscow State Univ, Moscow Ctr Fundamental & Appl Math, Moscow, Russia
关键词
Volterra type operator; Duhamel product; Besov space; Hadamard convolution; EXTENDED EIGENVALUES; PRODUCT;
D O I
10.1007/s13398-024-01689-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we give a Banach algebra structure by the Duhamel product and an invertibility criterion for Besov spaces B-p. We also describe the extended eigenvalues of the Volterra integral operator V. In the last section of the paper, motivated by the work of Karapetrovic and Mashreghi: namely, & Vert;f & lowast; g & Vert;(Aq) <= & Vert;D(1)f & Vert;(A1)& Vert;g & Vert;(Aq) for A(q)-spaces, where 1 <= q < infinity, we establish similar results by Hadamard-Bergman convolution in Besov spaces. We show that & Vert;K(g)f & Vert;(Bp )<= (pi+1)& Vert;g & Vert;(B1)& Vert;f & Vert;(Bp).
引用
收藏
页数:14
相关论文
共 19 条
  • [1] Aghekyan S.A., 2021, SPRINGER P MATH STAT, V357
  • [2] Arveson W., 2002, A Short Course on Spectral Theory, V209, P135
  • [3] Extended eigenvalues and the volterra operator
    Biswas, A
    Lambert, A
    Petrovic, S
    [J]. GLASGOW MATHEMATICAL JOURNAL, 2002, 44 : 521 - 534
  • [4] Duhamel convolution product in the setting of quantum calculus
    Bouzeffour, F.
    Garayev, M. T.
    [J]. RAMANUJAN JOURNAL, 2018, 46 (02) : 345 - 356
  • [5] Unbounded Hankel operators and the flow of the cubic Szego equation
    Gerard, Patrick
    Pushnitski, Alexander
    [J]. INVENTIONES MATHEMATICAE, 2023, 232 (03) : 995 - 1026
  • [6] Guediri H, 2015, NEW YORK J MATH, V21, P339
  • [7] Gurdal M., 2023, J. Anal., V31, P1557
  • [8] On some applications of Duhamel product
    Karaev, M. T.
    Tuna, H.
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2006, 54 (04) : 301 - 311
  • [9] Karaev M.T., 2004, Complex Var. Theory Appl., V49, P449
  • [10] Karaev M.T., 2005, Complex Var. Theory Appl., V50, P299