Time-resolved ambient pressure x-ray photoelectron spectroscopy: Advancing the operando study of ALD chemistry

被引:0
|
作者
Jones, Rosemary [1 ,3 ]
Kokkonen, Esko [2 ]
Eads, Calley [2 ]
Kust, Ulrike K. [1 ]
Prumbs, Julia [1 ]
Knudsen, Jan [1 ,2 ,3 ]
Schnadt, Joachim [1 ,2 ,3 ]
机构
[1] Lund Univ, Dept Phys, Div Synchrotron Radiat Res, Box 118, S-22100 Lund, Sweden
[2] Lund Univ, MAXLaboratory 4, Box 118, S-22100 Lund, Sweden
[3] Lund Univ, NanoLund, Box 118, S-22100 Lund, Sweden
基金
瑞典研究理事会;
关键词
Atomic layer deposition; Ambient pressure XPS; Time-resolved; In situ; Operando; TiO2; ATOMIC LAYER DEPOSITION; ELECTRICAL-PROPERTIES; TIO2; FILMS; THIN-FILMS; INSTRUMENT; PRECURSORS; HFO2;
D O I
10.1016/j.susc.2024.122656
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Today, atomic layer deposition (ALD) has become a firm corner stone of thin film deposition technology. The microelectronics industry, an early adopter of ALD, imposes stringent requirements on ALD to produce films with highly defined physical and chemical properties, which becomes even more important as device and component dimensions decrease. This, in turn, means that our understanding of the chemical processes underlying ALD needs to increase exponentially. Here, we show that one can use synchrotron-based time-resolved ambient pressure x-ray photoelectron spectroscopy (APXPS) to obtain highly detailed operando information on the surface chemistry of ALD, not only, as proven earlier, during the initial ALD cycles, but also for the steady-growth regime reached during the later stages of deposition. Using event averaging and Fourier-transform methods, we show that the ALD of TiO2 from titanium tetraisopropoxide (TTIP) and water precursors in the steady-growth regime follows the suggested ligand-exchange reaction mechanism, with no sign of oxygen transport between the deposited layers and the bulk of the film, as has been observed for other materials systems. Hence, the TiO2 ALD from TTIP and water constitutes a textbook example of metal oxide ALD, as expected for this well-known ALD process. The detailed insight is made possible by computerised control of the precursor pulses that enable the recording of long data sets, which comprise many ALD cycles at highly regular intervals, in combination with an advanced data analysis that allows us to pick out signals undetectable in the raw data. The analysis method also allows to separate oscillating contributions to the signals induced by the ALD pulsing from the overwhelming bulk signal.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Time-resolved nanocrystallography with X-ray lasers
    Spence, John C. H.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2011, 67 : C5 - C5
  • [32] Time-resolved x-ray absorption spectroscopy data for the study of chemical reaction intermediate states
    Moreno, Sofia Diaz
    Bowron, Daniel T.
    Evans, John
    X-RAY ABSORPTION FINE STRUCTURE-XAFS13, 2007, 882 : 849 - +
  • [33] Time-resolved X-ray photoelectron diffraction using an angle-resolved time-of-flight electron analyzer
    Ang, Artoni Kevin R.
    Fukatsu, Yuichiro
    Kimura, Koji
    Yamamoto, Yuta
    Yonezawa, Takahiro
    Nitta, Hirokazu
    Fleurence, Antoine
    Yamamoto, Susumu
    Matsuda, Lwao
    Yamada-Takamura, Yukiko
    Hayashi, Kouichi
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2020, 59 (10)
  • [34] Interface chemistry and electronic structure of ALD-derived HfAlO/Ge gate stacks revealed by X-ray photoelectron spectroscopy
    He, Gang
    Jiang, Shanshan
    Li, Wendong
    Zheng, Changyong
    He, Huaxin
    Li, Jing
    Sun, Zhaoqi
    Liu, Yanmei
    Liu, Mao
    JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 716 : 1 - 6
  • [35] Operando Near-Ambient Pressure X-ray Photoelectron Spectroscopy Study of the CO Oxidation Reaction on the Oxide/Metal Model Catalyst ZnO/Pt(111)
    Liu, Hang
    Zakhtser, Alter
    Naitabdi, Ahmed
    Rochet, Francois
    Bournel, Fabrice
    Salzemann, Caroline
    Petit, Christophe
    Gallet, Jean-Jacques
    Jie, Wanqi
    ACS CATALYSIS, 2019, 9 (11): : 10212 - 10225
  • [36] Operando Observation of Sulfur Species Poisoning Polymer Electrolyte Fuel Cell Studied by Near Ambient Pressure Hard X-ray Photoelectron Spectroscopy
    Yu, Liwei
    Takagi, Yasumasa
    Nakamura, Takahiro
    Sakata, Tomohiro
    Uruga, Tomoya
    Tada, Mizuki
    Iwasawa, Yasuhiro
    Masaoka, Shigeyuki
    Yokoyama, Toshihiko
    JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (01) : 603 - 611
  • [37] In Situ Electrochemical Cells to Study the Oxygen Evolution Reaction by Near Ambient Pressure X-ray Photoelectron Spectroscopy
    Streibel, Verena
    Haevecker, Michael
    Yi, Youngmi
    Velez, Juan J. Velasco
    Skorupska, Katarzyna
    Stotz, Eugen
    Knop-Gericke, Axel
    Schloegl, Robert
    Arrigo, Rosa
    TOPICS IN CATALYSIS, 2018, 61 (20) : 2064 - 2084
  • [38] Water Reactivity on the LaCoO3 (001) Surface: An Ambient Pressure X-ray Photoelectron Spectroscopy Study
    Stoerzinger, Kelsey A.
    Hong, Wesley T.
    Crumlin, Ethan J.
    Bluhm, Hendrik
    Biegalski, Michael D.
    Shao-Horn, Yang
    JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (34) : 19733 - 19741
  • [39] Probing the nickel corrosion phenomena in alkaline electrolyte using tender x-ray ambient pressure x-ray photoelectron spectroscopy
    Su, Hongyang
    Ye, Yifan
    Lee, Kyung-Jae
    Zeng, Jie
    Crumlin, Ethan J.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2021, 54 (37)
  • [40] Using "Tender" X-ray Ambient Pressure X-Ray Photoelectron Spectroscopy as A Direct Probe of Solid-Liquid Interface
    Axnanda, Stephanus
    Crumlin, Ethan J.
    Mao, Baohua
    Rani, Sana
    Chang, Rui
    Karlsson, Patrik G.
    Edwards, Marten O. M.
    Lundqvist, Mans
    Moberg, Robert
    Ross, Phil
    Hussain, Zahid
    Liu, Zhi
    SCIENTIFIC REPORTS, 2015, 5