Enhanced thermal conductivity and thermal shock resistance in diamond/ copper composites through diamond surface etching

被引:0
|
作者
Su, Zhenhua [1 ]
Han, Kai [1 ]
Ye, Zhijie [1 ,2 ]
Zhao, Jiwen [3 ]
Cao, Wenxin [1 ,2 ]
Zhu, Jiaqi [1 ]
机构
[1] Harbin Inst Technol, Natl Key Lab Sci & Technol Adv Composites Special, Harbin 150080, Peoples R China
[2] Harbin Inst Technol, Zhengzhou Res Inst, Zhengzhou 450000, Peoples R China
[3] Henan Core Diamond Mat Technol Co Ltd, Zhengzhou 450000, Peoples R China
关键词
Diamond/copper composites; Etched diamond; Thermal shock properties; Interfaces; CU;
D O I
10.1016/j.matlet.2025.138229
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Diamond/Cu composite materials, with excellent thermal conductivity and adjustable coefficient of thermal expansion, can be applied to various electronic packaging applications. In this study, diamond surfaces were etched via tungsten coating and subsequent calcination. Using these etched diamonds as reinforcements, high thermal conductivity Diamond/Cu composites were successfully fabricated. Compared with non-etched diamonds, the etched diamond-reinforced composites demonstrated significantly improved thermal conductivity and enhanced resistance to thermal cycling. Notably, after 600 thermal shock cycles, the thermal conductivity of the material remained at 597 W/mK, showing only a minor decrease of 6.4 % from its initial value.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Regulated Thermal Boundary Conductance between Copper and Diamond through Nanoscale Interfacial Rough Structures
    Wang, Ziyang
    Sun, Fangyuan
    Liu, Zihan
    Zheng, Libing
    Wang, Dazheng
    Feng, Yanhui
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (12) : 16162 - 16176
  • [32] Numerical Modeling of Thermal Conductivity of Diamond Particle Reinforced Aluminum Composite
    Yang, Wu-lin
    Peng, Kun
    Zhu, Jia-jun
    Li, De-yi
    Zhou, Ling-ping
    EIGHTH CHINA NATIONAL CONFERENCE ON FUNCTIONAL MATERIALS AND APPLICATIONS, 2014, 873 : 344 - 349
  • [33] Synergetic effect enabling high thermal conductivity in Cu/diamond composite
    Hao, Jinpeng
    Zhang, Yongjian
    Li, Ning
    Dai, Jingjie
    Wang, Xitao
    Zhang, Hailong
    DIAMOND AND RELATED MATERIALS, 2023, 138
  • [34] Effects of different element coatings on the interface characteristics and thermal conductivity of vacuum-sintered diamond/Cu composites
    Zhou, Q. W.
    Bolzoni, L.
    Yang, F.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2024, 42 (04):
  • [35] Interface formation evolution of the hot-forged copper-(Cr)diamond composite and its thermal conductivity
    Jia, S. Q.
    Bolzoni, L.
    Li, T.
    Yang, F.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 943
  • [36] Numerical simulation and experimental investigation on heat transfer and hydraulic characteristics of rectangular microchannel heat sinks using high thermal conductivity diamond/copper composites
    Lu, Kaijie
    Wang, Chunju
    He, Haidong
    Fan, Xueliang
    Chen, Feng
    Qi, Fei
    Wang, Changrui
    DIAMOND AND RELATED MATERIALS, 2024, 147
  • [37] Thermal Physical Properties of Al-coated Diamond/Cu Composites
    Zhu Congxu
    Zhu Xuliang
    Zhao Hongxiao
    Fa Wenjun
    Yang Xiaogang
    Zheng Zhi
    JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION, 2015, 30 (02): : 315 - 319
  • [38] Thermal Physical Properties of Al-coated Diamond/Cu Composites
    朱聪旭
    ZHU Xuliang
    ZHAO Hongxiao
    FA Wenjun
    YANG Xiaogang
    郑直
    Journal of Wuhan University of Technology(Materials Science), 2015, 30 (02) : 315 - 319
  • [39] Thermal physical properties of Al-coated diamond/Cu composites
    Congxu Zhu
    Xuliang Zhu
    Hongxiao Zhao
    Wenjun Fa
    Xiaogang Yang
    Zhi Zheng
    Journal of Wuhan University of Technology-Mater. Sci. Ed., 2015, 30 : 315 - 319
  • [40] Enhancing interfacial heat conduction in diamond-reinforced copper composites with boron carbide interlayers for thermal management
    Cui, Shuai
    Sun, Fangyuan
    Wang, Dazheng
    Zhang, Xing
    Zhang, Hailong
    Feng, Yanhui
    COMPOSITES PART B-ENGINEERING, 2024, 287