Multi-UAV Synchronous Approaching Using Homotopy-Based Trajectory Planning

被引:4
作者
Yao, Weiran [1 ]
Chen, Yang [2 ]
Tian, Haoyu [1 ]
Wu, Chengwei [1 ]
Wu, Ligang [1 ]
机构
[1] Harbin Inst Technol, Sch Astronaut, Harbin 150001, Peoples R China
[2] Harbin Engn Univ, Coll Intelligent Syst Sci & Engn, Harbin 150001, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Multi-UAV; synchronous approaching; homotopic method; trajectory planning; BOUNDED CURVATURE; DUBINS PATHS; VEHICLES; LENGTH;
D O I
10.1142/S2737480722500121
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Synchronous approaching is an important capability for autonomous cooperation of multiple unmanned aerial vehicles (UAVs). In this paper, a homotopy-based trajectory planning method is presented for the multi-UAV synchronous approaching problem. A homotopic trajectory description is employed to construct the trajectory solution space of the UAVs. A novel onion-like homotopy structure is proposed to decouple the performance indexes of the trajectory planning problem. Local trajectory homotopy structures are designed based on the detouring model and the hovering model of UAV. The optimal trajectories for synchronous approaching are searched within the homotopy structures. Simulation results show how synchronous the UAVs are, by using the proposed homotopy-based trajectory planning method.
引用
收藏
页数:26
相关论文
共 50 条
[31]   Research on Optimization Method of Multi-UAV Collaborative Task Planning [J].
Cao Ze-ling ;
Wang Qi ;
Yang Ye-qing .
2018 IEEE CSAA GUIDANCE, NAVIGATION AND CONTROL CONFERENCE (CGNCC), 2018,
[32]   Multi-UAV Area Coverage Track Planning Based on the Voronoi Graph and Attention Mechanism [J].
Wang, Jubo ;
Wang, Ruixin .
APPLIED SCIENCES-BASEL, 2024, 14 (17)
[33]   Autonomous Multi-UAV Path Planning in Pipe Inspection Missions Based on Booby Behavior [J].
Aljalaud, Faten ;
Kurdi, Heba ;
Youcef-Toumi, Kamal .
MATHEMATICS, 2023, 11 (09)
[34]   Mathematical modelling of multi-UAV scenario planning based on 3D LiDAR [J].
Chai R. .
International Journal of Information and Communication Technology, 2024, 24 (06)
[35]   Solving complex multi-UAV mission planning problems using multi-objective genetic algorithms [J].
Ramirez-Atencia, Cristian ;
Bello-Orgaz, Gema ;
R-Moreno, Maria D. ;
Camacho, David .
SOFT COMPUTING, 2017, 21 (17) :4883-4900
[36]   Multi-UAV Cooperative Path Planning for Sensor Placement Using Cooperative Coevolving Genetic Strategy [J].
Sorli, Jon-Vegard ;
Graven, Olaf Hallan ;
Bjerknes, Jan Dyre .
ADVANCES IN SWARM INTELLIGENCE, ICSI 2017, PT II, 2017, 10386 :433-444
[37]   Trajectory Planning for Multi-rotor UAV Based on Energy Cost Model [J].
Wu, Kunpeng ;
Feng, Minling ;
Wu, Chaoxian ;
Lin, Yuan ;
Lu, Shaofeng .
2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, :1791-1796
[38]   Cooperative Multi-UAV Conflict Avoidance Planning in a Complex Urban Environment [J].
Wang, Kaiping ;
Song, Mingzhu ;
Li, Meng .
SUSTAINABILITY, 2021, 13 (12)
[39]   Multi-UAV WRSN charging path planning based on improved heed and IA-DRL [J].
Shan, Tianle ;
Wang, Yang ;
Zhao, Chuanxin ;
Li, Yingchun ;
Zhang, Guanghai ;
Zhu, Qiangjun .
COMPUTER COMMUNICATIONS, 2023, 203 :77-88
[40]   Practical applications using multi-UAV systems and aerial robotic swarms [J].
Garcia-Aunon, P. ;
Roldan, J. J. ;
De Leon, J. ;
Del Cerro, J. ;
Barrientos, A. .
REVISTA IBEROAMERICANA DE AUTOMATICA E INFORMATICA INDUSTRIAL, 2021, 18 (03) :230-241