共 38 条
- [1] Sun H., He D., Zhong J., Jin Z., Wei Z., Lao Z., Shan S., Preventive maintenance optimization for key components of subway train bogie with consideration of failure risk, Eng. Fail. Anal., 154, (2023)
- [2] Yang H., Jiang G., Tian W., Mei X., Nee A.Y.C., Ong S.K., Microservice-based digital twin system towards smart manufacturing, Rob. Comput. Integr. Manuf., 91, (2025)
- [3] Yuan X., Shi D., Shi N., Li Y., Liang P., Zhang L., Zheng Z., Intelligent fault diagnosis of rolling bearing based on an active federated local subdomain adaptation method, Adv. Eng. Inform., 62, (2024)
- [4] Liu Y., Li X., Zhang X., Fan L., Chen X., Gong B., Imbalanced deep transfer network for fault diagnosis of high-speed train traction motor bearings, Knowl.-Based Syst., 293, (2024)
- [5] Xu Z., Zhao K., Wang J., Bashir M., Physics-informed probabilistic deep network with interpretable mechanism for trustworthy mechanical fault diagnosis, Adv. Eng. Inform., 62, (2024)
- [6] Gao H., Zhang X., Gao X., Li F., Han H., Multi-timescale attention residual shrinkage network with adaptive global-local denoising for rolling-bearing fault diagnosis, Knowl.-Based Syst., 304, (2024)
- [7] Cui L., Xiao Y., Liu D., Han H., Digital twin-driven graph domain adaptation neural network for remaining useful life prediction of rolling bearing, Reliab. Eng. Syst. Saf., 245, (2024)
- [8] He D., Zhang Z., Jin Z., Zhang F., Yi C., Liao S., RTSMFFDE-HKRR: a fault diagnosis method for train bearing in noise environment, Measurement, 239, (2025)
- [9] Xiao Y., Liu D., Cui L., Wang H., Heterogeneous graph representation-driven multiplex aggregation graph neural network for remaining useful life prediction of bearings, Mech. Syst. Sig. Process., 220, (2024)
- [10] Kumar A., Parkash C., Tang H., Xiang J., Intelligent framework for degradation monitoring, defect identification and estimation of remaining useful life (RUL) of bearing, Adv. Eng. Inform., 58, (2023)