Sodium-Ion-Conducting Alginate-Based Electrolyte Material for Energy Storage Applications

被引:0
|
作者
Yadav, Shashikant [1 ]
Verma, Dipendra Kumar [1 ]
Tiwari, Rudramani [2 ]
Kumar, Devendra [1 ]
Parwati, Km [1 ]
Rai, Rajshree [1 ]
Adhikary, Pubali [3 ]
Krishnamoorthi, Subramanian [1 ]
机构
[1] Banaras Hindu Univ, Inst Sci, Ctr Adv Studies, Dept Chem, Varanasi 221005, Uttar Pradesh, India
[2] CCRAS Reg Ayurveda Res Inst, Dept Chem, Gwalior 474009, Madhya Pradesh, India
[3] Banaras Hindu Univ, Inst Sci, Cent Discovery Ctr, NMR Lab,SATHI, Varanasi 221005, Uttar Pradesh, India
关键词
dielectrics; energy storage materials; pseudosolid polymer electrolytes; sodium alginates; sodium polyphosphates; PERFORMANCE; BATTERIES;
D O I
10.1002/ente.202401912
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
A green pseudosolid polymer electrolyte is prepared using sodium alginate and sodium polyphosphate via a sustainable solution-cast method with water as the medium. The amorphous anionic polymer backbone enables easy cationic movement, enhancing ionic conductivity. This water-in-salt electrolyte exhibits an electrochemical stability window of 3.2 V and a cationic transport number of 0.90%. Thermal analysis confirms stability up to 150 degrees C, making it suitable for high-temperature applications. X-ray diffraction analysis verifies its amorphous nature, facilitating smooth ion transport, while scanning electron microscopy reveals a smooth morphology with well-defined pores, improving electrode interface stability. At room temperature, the electrolyte displays electrical conductivity around 10-5 S cm-1, increasing to 10-4 S cm-1 above 40 degrees C. The drift ionic velocity is approximate to 10-5 m s-1, with ionic mobility of 10-7 mV s-1. Cage-type hopping dominates ionic movement, requiring a low activation energy of 0.158 eV. Incorporating an ionic liquid as a plasticizer further enhances conductivity to 10-3 S cm-1. Additionally, the material exhibits dielectric relaxation due to polar group orientation. Its high capacitance with minimal electrode contribution makes it a promising candidate for energy storage applications, offering excellent electrochemical and thermal stability, along with superior electrode-electrolyte interface properties.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Chitosan as a suitable host for sustainable plasticized nanocomposite sodium ion conducting polymer electrolyte in EDLC applications: Structural, ion transport and electrochemical studies
    Sadiq, Niyaz M.
    Abdulwahid, Rebar T.
    Aziz, Shujahadeen B.
    Woo, H. J.
    Kadir, Mohd F. Z.
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 265
  • [32] All-Climate Iron-Based Sodium-Ion Full Cell for Energy Storage
    Cao, Yongjie
    Cao, Xinle
    Dong, Xiaoli
    Zhang, Xiang
    Xu, Jie
    Wang, Nan
    Yang, Yang
    Wang, Congxiao
    Liu, Yao
    Xia, Yongyao
    ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (33)
  • [33] A sodium liquid metal battery based on the multi-cationic electrolyte for grid energy storage
    Zhou, Hao
    Li, Haomiao
    Gong, Qing
    Yan, Shuai
    Zhou, Xianbo
    Liang, Shengzhi
    Ding, Wenjin
    He, Yaling
    Jiang, Kai
    Wang, Kangli
    ENERGY STORAGE MATERIALS, 2022, 50 : 572 - 579
  • [34] Trimodal thermal energy storage material for renewable energy applications
    Saher, Saliha
    Johnston, Sam
    Esther-Kelvin, Ratu
    Pringle, Jennifer M.
    Macfarlane, Douglas R.
    Matuszek, Karolina
    NATURE, 2024, 636 (8043) : 622 - 626
  • [35] Metal organic frameworks (MOFs)@conducting polymeric nanoarchitectures for electrochemical energy storage applications
    Ogbu, James Ekuma
    Idumah, Christopher Igwe
    POLYMER-PLASTICS TECHNOLOGY AND MATERIALS, 2024, 63 (08): : 939 - 974
  • [36] The buckwheat-derived hard carbon as an anode material for sodium-ion energy storage system
    Kydyrbayeva, Uldana
    Baltash, Yelnury
    Mukhan, Orynbassar
    Nurpeissova, Arailym
    Kim, Sung-Soo
    Bakenov, Zhumabay
    Mukanova, Aliya
    JOURNAL OF ENERGY STORAGE, 2024, 96
  • [37] Unexpected performance of layered sodium-ion cathode material in ionic liquid-based electrolyte
    Chagas, Luciana Gomes
    Buchholz, Daniel
    Wu, Liming
    Vortmann, Britta
    Passerini, Stefano
    JOURNAL OF POWER SOURCES, 2014, 247 : 377 - 383
  • [38] Deferoxamine functionalized alginate-based collagen composite material enhances the integration of metal implant and bone interface
    Che, Zhenjia
    Sheng, Xiao
    Sun, Qi
    Wu, Yanglin
    Song, Kaihang
    Chen, Aopan
    Chen, Jing
    Chen, Qiyun
    Cai, Ming
    CARBOHYDRATE POLYMERS, 2025, 349
  • [39] New High Capacity Electric Energy Storage Device with an Electrolyte that Contains a Conducting Polymer
    Tachibana, Masamitsu
    Tsukada, Yasuhiro
    Ohishi, Takahiro
    Yamagishi, Hideo
    Murakami, Mutsuaki
    KOBUNSHI RONBUNSHU, 2009, 66 (07) : 259 - 265
  • [40] A new family of sodium niobate-based dielectrics for electrical energy storage applications
    Yang, Zetian
    Du, Hongliang
    Jin, Li
    Hu, Qingyuan
    Qu, Shaobo
    Yang, Zhaoning
    Yu, Ying
    Wei, Xiaoyong
    Xu, Zhuo
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2019, 39 (09) : 2899 - 2907